Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71428
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇(Eric Y. Chuang)
dc.contributor.authorTzu-Hao Linen
dc.contributor.author林資皓zh_TW
dc.date.accessioned2021-06-17T06:00:33Z-
dc.date.available2019-02-14
dc.date.copyright2019-02-14
dc.date.issued2019
dc.date.submitted2019-02-12
dc.identifier.citation1. World Health Organization. Global Health Observatory. Geneva: World Health Organization who.int/gho/database/en/. 2018.
2. Omran, A.R., The epidemiologic transition. A theory of the epidemiology of population change. Milbank Mem Fund Q, 1971. 49(4): p. 509-38.
3. Zhang, L., et al., Gene expression profiles in normal and cancer cells. Science, 1997. 276(5316): p. 1268-72.
4. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
5. Carninci, P., et al., The transcriptional landscape of the mammalian genome. Science, 2005. 309(5740): p. 1559-63.
6. Okazaki, Y., et al., Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002. 420(6915): p. 563-73.
7. Cabili, M.N., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011. 25(18): p. 1915-27.
8. Cheng, J., et al., Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005. 308(5725): p. 1149-54.
9. Wilusz, J.E., H. Sunwoo, and D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009. 23(13): p. 1494-504.
10. Taft, R.J., et al., Non-coding RNAs: regulators of disease. J Pathol, 2010. 220(2): p. 126-39.
11. Chen, L.L. and G.G. Carmichael, Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol, 2010. 22(3): p. 357-64.
12. Bhat, S.A., et al., Long non-coding RNAs: Mechanism of action and functional utility. Noncoding RNA Res, 2016. 1(1): p. 43-50.
13. Teichmann, S.A. and M.M. Babu, Gene regulatory network growth by duplication. Nat Genet, 2004. 36(5): p. 492-6.
14. Schaefer, C.F., et al., PID: the Pathway Interaction Database. Nucleic Acids Res, 2009. 37(Database issue): p. D674-9.
15. van Dam, S., et al., Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform, 2018. 19(4): p. 575-592.
16. Amar, D., H. Safer, and R. Shamir, Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput Biol, 2013. 9(3): p. e1002955.
17. Kostka, D. and R. Spang, Finding disease specific alterations in the co-expression of genes. Bioinformatics, 2004. 20 Suppl 1: p. i194-9.
18. Mercer, T.R., M.E. Dinger, and J.S. Mattick, Long non-coding RNAs: insights into functions. Nat Rev Genet, 2009. 10(3): p. 155-9.
19. Pang, K.C., M.C. Frith, and J.S. Mattick, Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet, 2006. 22(1): p. 1-5.
20. Zhou, Y., et al., Activation of p53 by MEG3 non-coding RNA. J Biol Chem, 2007. 282(34): p. 24731-42.
21. Huang, G.Q., et al., Co-expression network analysis of long noncoding RNAs (IncRNAs) and cancer genes revealsSFTA1P and CASC2abnormalities in lung squamous cell carcinoma. Cancer Biol Ther, 2017. 18(2): p. 115-122.
22. Fang, L., H. Wang, and P. Li, Systematic analysis reveals a lncRNA-mRNA co-expression network associated with platinum resistance in high-grade serous ovarian cancer. Invest New Drugs, 2018. 36(2): p. 187-194.
23. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014. 15(12): p. 550.
24. Hsiao, T.H., et al., Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers. Sci Rep, 2016. 6: p. 23035.
25. Tan, G. and B. Lenhard, TFBSTools: an R/bioconductor package for transcription factor binding site analysis. Bioinformatics, 2016. 32(10): p. 1555-6.
26. Khan, A., et al., JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Research, 2018. 46(D1): p. D260-D266.
27. Nguyen, Nga Thi T., et al., RSAT 2018: regulatory sequence analysis tools 20th anniversary. Nucleic Acids Research, 2018. 46(W1): p. W209-W214.
28. Jia, J., et al., FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway. BMC Cell Biology, 2014. 15(1): p. 16.
29. Masuda, T., et al., ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling. Sci Rep, 2015. 5: p. 9170.
30. Li, S.J., et al., Prognostic value of stromal decorin expression in patients with breast cancer: a meta-analysis. J Thorac Dis, 2015. 7(11): p. 1939-50.
31. Santhanam, A.N., et al., Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene, 2010. 29(27): p. 3921-32.
32. Snezhkina, A.V., et al., Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer. BMC Genomics, 2016. 17(Suppl 14): p. 1011.
33. Shui Ping Tu MD, Y.W.S.M., Jian Tao Cui MS, Bing Zou MD, Marie C. M. Lin, Qing Gu, Shi Hu Jiang MD, Hsiang Fu Kung, Robert G. Korneluk, Benjamin C. Y. Wong MD, Tumor suppressor XIAP‐Associated factor 1 (XAF1) cooperates with tumor necrosis factor‐related apoptosis‐inducing ligand to suppress colon cancer growth and trigger tumor regression. Cancer 2010. 116(5): p. 12.
34. Liu, Z., et al., Long non-coding RNA MIAT promotes growth and metastasis of colorectal cancer cells through regulation of miR-132/Derlin-1 pathway. Cancer Cell Int, 2018. 18: p. 59.
35. Cong, J., et al., Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Progression. Cell Metab, 2018. 28(2): p. 243-255 e5.
36. Du, X., et al., CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A, 2018. 115(50): p. E11731-E11740.
37. Baytak, E., et al., Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumour Biol, 2017. 39(5): p. 1010428317701648.
38. Zhang, G., et al., Long non-coding RNA FENDRR reduces prostate cancer malignancy by competitively binding miR-18a-5p with RUNX1. Biomarkers, 2018. 23(5): p. 435-445.
39. Yu, X., et al., Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology. Adv Cancer Res, 2015. 128: p. 309-64.
40. Standish, L.J., et al., Breast cancer and the immune system. J Soc Integr Oncol, 2008. 6(4): p. 158-68.
41. Cunningham-Rundles, S., et al., Natural cytotoxicity of peripheral blood lymphocytes and regional lymph node cells in breast cancer in women. J Natl Cancer Inst, 1981. 67(3): p. 585-90.
42. Zhang, Q., Role of Jak/Stat pathway in the pathogenesis of breast cancer. VCU University Archives, 2010.
43. Kornienko, A.E., et al., Gene regulation by the act of long non-coding RNA transcription. BMC Biol, 2013. 11: p. 59.
44. Vance, K.W. and C.P. Ponting, Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet, 2014. 30(8): p. 348-55.
45. Jiang, Y., et al., Oncogenic HBXIP enhances ZEB1 through Sp1 to accelerate breast cancer growth. Thoracic cancer, 2018. 9(12): p. 1664-1670.
46. Jia, L., et al., KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene, 2016. 35(16): p. 2040-51.
47. Bajpai, R. and G.P. Nagaraju, Specificity protein 1: Its role in colorectal cancer progression and metastasis. Crit Rev Oncol Hematol, 2017. 113: p. 1-7.
48. Bialkowska, A.B., et al., A colon cancer-derived mutant of Kruppel-like factor 5 (KLF5) is resistant to degradation by glycogen synthase kinase 3beta (GSK3beta) and the E3 ubiquitin ligase F-box and WD repeat domain-containing 7alpha (FBW7alpha). J Biol Chem, 2014. 289(9): p. 5997-6005.
49. Hsu, T.I., et al., Sp1 expression regulates lung tumor progression. Oncogene, 2012. 31(35): p. 3973-88.
50. Li, X., et al., KLF5 promotes hypoxia-induced survival and inhibits apoptosis in non-small cell lung cancer cells via HIF-1alpha. Int J Oncol, 2014. 45(4): p. 1507-14.
51. Sankpal, U.T., et al., Targeting Sp1 transcription factors in prostate cancer therapy. Med Chem, 2011. 7(5): p. 518-25.
52. Ci, X., et al., KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF1alpha accumulation. Mol Cancer, 2015. 14: p. 91.
53. Phan, D., et al., Identification of Sp2 as a transcriptional repressor of carcinoembryonic antigen-related cell adhesion molecule 1 in tumorigenesis. Cancer Res, 2004. 64(9): p. 3072-8.
54. Luan, T., et al., Long non-coding RNA MIAT promotes breast cancer progression and functions as ceRNA to regulate DUSP7 expression by sponging miR-155-5p. Oncotarget, 2017. 8(44): p. 76153-76164.
55. Alipoor, F.J., M.H. Asadi, and M. Torkzadeh‐Mahani, MIAT lncRNA is overexpressed in breast cancer and its inhibition triggers senescence and G1 arrest in MCF7 cell line. J Cell Biochem, 2018. 119(8): p. 6470-6481.
56. Henkels, K.M., et al., Cell invasion of highly metastatic MTLn3 cancer cells is dependent on phospholipase D2 (PLD2) and Janus kinase 3 (JAK3). J Mol Biol, 2011. 408(5): p. 850-62.
57. Gunther, M., M. Laithier, and O. Brison, A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening. Mol Cell Biochem, 2000. 210(1-2): p. 131-42.
58. Kang, T.H., et al., Licochalcone A Suppresses Specificity Protein 1 as a Novel Target in Human Breast Cancer Cells. J Cell Biochem, 2017. 118(12): p. 4652-4663.
59. Wang, X.B., et al., [Expression and prognostic value of transcriptional factor sp1 in breast cancer]. Ai Zheng, 2007. 26(9): p. 996-1000.
60. Xu, T.P., et al., Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol, 2014. 7: p. 63.
61. Miao, L., et al., Loss of long noncoding RNA FOXF1-AS1 regulates epithelial-mesenchymal transition, stemness and metastasis of non-small cell lung cancer cells. Oncotarget, 2016. 7(42): p. 68339-68349.
62. Mo, R.J., et al., Decreased HoxD10 Expression Promotes a Proliferative and Aggressive Phenotype in Prostate Cancer. Curr Mol Med, 2017. 17(1): p. 70-78.
63. Zhang, X., et al., Exploration of the molecular mechanism of prostate cancer based on mRNA and miRNA expression profiles. Onco Targets Ther, 2017. 10: p. 3225-3232.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71428-
dc.description.abstract長片段非編碼核醣核酸(lncRNA)已知在許多生物體內的調控機制都有所影響,目前卻只了解極有限的長片段非編碼核醣核酸的調控目標基因。本篇研究中,我們利用一個新穎的方法,透過共表現分析(co-expression analysis)從基因表現的資料來鑑定出長片段編碼核醣核酸的目標基因;另外,藉由調控分析(modulation analysis)也可以得到腫瘤組織特有長片段非編碼核醣核酸與核醣核酸的配對關係。
本次研究採用的方法來自Modulated Gene Interaction Analysis,簡稱MAGIC,表現量資料經過前處理後,會根據MAGIC的三個部分進行計算:(1)計算長片段非編碼核醣核酸及核醣核酸之間的皮爾森相關係數(Pearson’s correlation coefficient)。(2)費雪轉換(Fisher transformation)。(3)費雪反轉換。調控分數(modulation score)會藉由以上方式被計算出來;同時,具有高調控分數的長片段非編碼核醣核酸及核醣核酸對亦被認為是在腫瘤組織中特有的基因對。本研究使用的基因表現量資料來自TCGA和GTEx兩個資料庫所提供的乳癌、大腸癌、肺癌及攝護腺癌資訊,每個癌症中特有的長片段非編碼核醣核酸及核醣核酸對會分別被鑑定出來。而根據計算出的目標基因,我們利用功能富集分析(functional enrichment analysis)來預測長片段非編碼核醣核酸可能參與的生物功能。
為了能更清楚地了解這些鑑定出的基因對的互動機制,我們預測基因對上潛在的轉錄因子鍵結位置(transcription factor binding site),一個被相同轉錄因子鍵結的基因對,表示該長片段非編碼核醣核酸及核醣核酸是會被同一轉錄因子所調控。在乳癌中,MIAT—JAK3擁有共同的轉錄因子(SP1);MIAT則可以被認為在乳癌發生中扮演重要的角色。而攝護腺癌中,FENDRR—HOXD10也共同被SP1調控,因此FENDRR在攝護腺癌中的目標基因及生物調控機制與HOXD10的關係是值得被考慮的。
zh_TW
dc.description.abstractLong non-coding RNAs (lncRNAs) are known for involving in various kinds of biological mechanisms. However, only limited target genes of lncRNA have been explored. In this study, we used a novel method to identify target genes of lncRNA from gene expression profiles using co-expression analysis. Furthermore, the tumor-tissue-specific lncRNA-mRNA association pairs were identified through modulation analysis.
The method is adapted from the previously method called “Modulated Gene Interaction Analysis (MAGIC). First, expression data passing the preprocessing procedures was applied to three steps of MAGIC: (1) Pearson’s correlation coefficient between lncRNAs and mRNAs, (2) Fisher transformation, and (3) Inverse Fisher transformation. Modulation score was introduced to identify cancer specific lncRNA target genes. lncRNA—mRNA pair with high modulation score was defined as tumor specific. The gene expression profiles included breast, colon, lung, and prostate cancers were obtained from TCGA and GTEx. The lncRNA-mRNA pairs for each cancer were identified respectively. Functional enrichment analysis was performed on lncRNAs to predict functions and involved pathways based on target genes of lncRNAs.
To better understand the intra-interaction of the identified pairs, we predicted transcription factor binding sites on the pairs. A lncRNA—mRNA pair sharing a common transcription factor suggests that the transcription factor may regulate both the lncRNA and the mRNA, as well as SP1 within MIAT—JAK3 in breast cancer. This implied that MIAT has the potential to play a crucial role in breast cancer. In prostate cancer, FENDRR—HOXD10 was regulated by SP1. Thus, the target of FENDRR and regulation mechanism with HOXD10 in cancer are worth noted.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:00:33Z (GMT). No. of bitstreams: 1
ntu-108-R05945018-1.pdf: 3122325 bytes, checksum: 8cdda3a19311cb531bc286a3321185e7 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
List of Tables V
List of Figures VI
Chapter 1. Introduction 1
1.1 Cancers 1
1.2 Long non-coding RNA (lncRNA) 2
1.3 Co-expression analysis 3
1.4 Previous studies and motivation 5
Chapter 2. Materials and methods 7
2.1 Expression profiles 7
2.1.1 TCGA 7
2.1.2 GTEx 8
2.2 Preprocessing 8
2.3 Modulated gene interaction analysis (MAGIC) 9
2.4 Functional analysis 12
2.5 Survival analysis 14
2.6 Transcription factor binding sites prediction 14
Chapter 3. Results 16
3.1 Overview of identified lncRNA-mRNA pairs 16
3.2 lncRNA—mRNA pairs with high scores 18
3.3 Co-expression network and functional enrichment analysis 21
3.4 Transcription factor binding sites prediction on lncRNA—mRNA pairs 23
Chapter 4. Discussion 26
4.1 Potential interaction in BRCA 26
4.2 Potential interaction in PRAD 28
4.3 Limitations 29
Chapter 5. Conclusion 31
References 33
dc.language.isoen
dc.subject長片段非編碼核醣核酸zh_TW
dc.subject共表現分析網絡zh_TW
dc.subject癌症zh_TW
dc.subject基因對zh_TW
dc.subject目標基因zh_TW
dc.subjectlncRNAen
dc.subjectco-expression networken
dc.subjectcanceren
dc.subjectgene pairsen
dc.subjecttarget genesen
dc.title鑑定癌症與正常組織間具共表現差異之蛋白質編碼與長片段非編碼核醣核酸對之交互關係zh_TW
dc.titleIdentify Differential Tumor-specific Co-expression LncRNA-mRNA Pairs in Cancersen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.coadvisor蕭自宏(Tzu-Hung Hsiao)
dc.contributor.oralexamcommittee蔡孟勳(Mon-Hsun Tsai),賴亮全(Liang-Chuan Lai),盧子彬(Tzu-Pin Lu)
dc.subject.keyword長片段非編碼核醣核酸,共表現分析網絡,癌症,基因對,目標基因,zh_TW
dc.subject.keywordlncRNA,co-expression network,cancer,gene pairs,target genes,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201900371
dc.rights.note有償授權
dc.date.accepted2019-02-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved