Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71422
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺(Pai-Chi Li)
dc.contributor.authorYi-An Wangen
dc.contributor.author王以安zh_TW
dc.date.accessioned2021-06-17T06:00:27Z-
dc.date.available2024-02-19
dc.date.copyright2019-02-19
dc.date.issued2019
dc.date.submitted2019-02-12
dc.identifier.citation[1] A. Kumar, and A. Chuan, “Ultrasound guided vascular access: efficacy and safety,” Best Practice & Research Clinical Anaesthesiology, vol. 23, no. 3, pp. 299-311, 2009.
[2] B. D. Sites, and J. G. Antonakakis, “Ultrasound guidance in regional anesthesia: state of the art review through challenging clinical scenarios,” Local and regional anesthesia, vol. 2, pp. 1-14, 2009.
[3] S. Guo, A. Schwab, G. McLeod, G. Corner, S. Cochran, R. Eisma, and R. Soames, “Echogenic regional anaesthesia needles: a comparison study in Thiel cadavers,” Ultrasound in medicine & biology, vol. 38, no. 4, pp. 702-707, 2012.
[4] D. Souzdalnitski, I. Lerman, and T. M. Halaszynski, How to improve needle visibility: Springer, 2011.
[5] 吳凱文, “利用雷射產生之漏溢聲波進行組織檢查時之針定位,” 臺灣大學生醫電子與資訊學研究所學位論文, pp. 1-60, 2016.
[6] K. W. Wu, Y. A. Wang, and P. C. Li, “Laser Generated Leaky Acoustic Waves for Needle Visualization,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 4, pp. 546-556, 2018.
[7] J. Hong, T. Dohi, M. Hashizume, K. Konishi, and N. Hata, “An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy,” Physics in Medicine & Biology, vol. 49, no. 3, pp. 441–455, 2004.
[8] G. A. Chapman, D. Johnson, and A. R. Bodenham, “Visualisation of needle position using ultrasonography,” Anaesthesia, vol. 61, no. 2, pp. 148-158, 2006.
[9] J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” Journal of biomedical optics, vol. 15, no. 2, pp. 021309-1-021309-6, 2010.
[10] C. Kim, T. N. Erpelding, K. Maslov, L. Jankovic, W. J. Akers, L. Song, S. Achilefu, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes,” Journal of biomedical optics, vol. 15, no. 4, pp. 046010-1-046010-4, 2010.
[11] C. Wei, N. Thu-Mai, J. Xia, B. Arnal, I. Pelivanov, and M. O. Donnell, “Clinically translatable ultrasound/photoacoustic imaging for real-time needle biopsy guidance,” IEEE International Ultrasonics Symposium, pp. 839-842, 3-6 Sept., 2014.
[12] D. Piras, C. Grijsen, P. Schutte, W. Steenbergen, and S. Manohar, “Photoacoustic needle: minimally invasive guidance to biopsy,” Journal of biomedical optics, vol. 18, no. 7, pp. 070502-1-070502-3, 2013.
[13] P. Wang, O. Ecabert, T. Chen, M. Wels, J. Rieber, M. Ostermeier, and D. Comaniciu, “Image-based co-registration of angiography and intravascular ultrasound images,” IEEE transactions on medical imaging, vol. 32, no. 12, pp. 2238-2249, 2013.
[14] R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, and D. J. Hawkes, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” The Lancet, vol. 362, no. 9399, pp. 1877-1882, 2003.
[15] K. Tsuchida, H. M. García‐García, W. J. van der Giessen, E. P. McFadden, M. van der Ent, G. Sianos, H. Meulenbrug, A. T. L. Ong, and P. W. Serruys, “Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience,” Catheterization and cardiovascular interventions, vol. 67, no. 3, pp. 356-363, 2006.
[16] S. B. Kutty, R. W. O. K. Rahmat, S. Kassim, H. Madzin, and H. Hamdan, “A review of 3D reconstruction of coronary arteries based on the co-registration of IVUS and coronary angiogram,” International Conference on Computer Assisted System in Health (CASH), pp. 1-5, 2014.
[17] Z. M. Hijazi, K. Shivkumar, and D. J. Sahn, “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization,” Circulation, vol. 119, no. 4, pp. 587-596, 2009.
[18] D. C. Worlton, Ultrasonic testing with Lamb waves: General Electric Co., Hanford Atomic Products Operation, Richland, Wash., 1956.
[19] D. N. Alleyne, and P. Cawley, “The interaction of Lamb waves with defects,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 39, no. 3, pp. 381-397, 1992.
[20] H. Nishino, S. Takashina, F. Uchida, M. Takemoto, and K. Ono, “Modal analysis of hollow cylindrical guided waves and applications,” Japanese Journal of Applied Physics, vol. 40, no. 1R, pp. 364-370, 2001.
[21] D. C. Gazis, “Three‐Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” The Journal of the Acoustical Society of America, vol. 31, no. 5, pp. 568-573, 1959.
[22] P. D. Wilcox, M. J. S. Lowe, and P. Cawley, “Mode and transducer selection for long range Lamb wave inspection,” Journal of intelligent material systems and structures, vol. 12, no. 8, pp. 553-565, 2001.
[23] M. G. Silk, and K. F. Bainton, “The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves,” Ultrasonics, vol. 17, no. 1, pp. 11-19, 1979.
[24] F. Simonetti, “A guided wave technique for needle biopsy under ultrasound guidance,” SPIE Medical Imaging, pp. 726118-726118-8, 2009.
[25] M. Baltazar, R. Chona, C. Suh, and C. Burger, “Study on Laser-generated Ultrasonic Waves on Cylindrical Surfaces,” Experimental and Applied Mechanic, vol. 167, pp. 163–167, 2003.
[26] C. B. Scruby, and L. E. Drain, Laser ultrasonics techniques and applications: CRC Press, 1990.
[27] X. Zhou, and C. He, “Laser ultrasonic techniques for nondestructive testing,” International Conference on Experimental Mechanics: Advances and Applications, pp. 288-293, 1996.
[28] C. B. Scruby, “Studies of laser‐generated ultrasonic waveforms at different orientations,” Applied physics letters, vol. 48, no. 2, pp. 100-102, 1986.
[29] A. M. Aindow, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Laser‐generated ultrasonic pulses at free metal surfaces,” The Journal of the Acoustical Society of America, vol. 69, no. 2, pp. 449-455, 1981.
[30] P. Flandrin, “Time frequency and chirps,” Proc. SPIE 4391, Wavelet Applications VIII, (26 March 2001), vol. 4391, pp. 161-176, 2001.
[31] S. Mallat, A wavelet tour of signal processing: Elsevier, 1999.
[32] E. C. Farnett, and G. H. Stevens, “Pulse compression radar,” Radar handbook, vol. 2, pp. 10.1-10.39, 1990.
[33] R. Milleit, “A matched-filter pulse-compression system using a nonlinear FM waveform,” IEEE transactions on aerospace and electronic systems, no. 1, pp. 73-78, 1970.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71422-
dc.description.abstract超音波針導引技術已經廣泛地被醫師們使用於手術中,由於超音波影像對人體影響較小的優勢,使得醫師能夠藉由影像即時了解組織的解剖資訊及針在組織中相對應位置。在先前研究中提出了一種利用雷射激發漏溢聲波,並利用超音波探頭定位的方法,然而此方法並無法應用在非線性的物體上,為了克服這個現象,此研究提出一種利用雷射激發漏溢聲波,並對漏溢聲波進行波束成像的定位方法。收到訊號時間可分成兩個部分,一個是導波在針或是導絲上走的時間,另外一個是在水中傳遞的時間,知道導波在針上走的時間,並配合合適波束成像的時間延遲,得到類似傳統的光聲訊號。在不鏽鋼針實驗結果中,結果顯示漏溢聲波定位方法做到51 mm的定位深度,並且最大的針插入角度能夠到達47度,顯示本方法優於現有的超音波與光聲方法。而此方法可進一步用在心導管導絲的定位,在實驗結果中,顯示此方法可比傳統超音波影像在大角度有更好的定位效果,且可以達到跟傳統超音波影像在大深度有相同表現水準,同樣優於現有的超音波與光聲方法。最後此方法可應用在長度達1268 mm導絲針尖定位,足以在體外產生超音波導波傳遞至體內形成點波源。zh_TW
dc.description.abstractUltrasound-guided needle operation is widely used for real-time visualization of the needle position during tissue biopsy and localized drug delivery. Conventionally B-mode imaging is used for needle visualization. However, its practical use has been limited due to acoustic reflection at the needle surface. To overcome this problem, we previously proposed a method to exploit the laser generated guided wave and the leaky acoustic waves. Although successful, the method is only applicable to linear objects and cannot be used for nonlinear objects, thus limiting its applications in areas such as guidewire visualization. The purpose of the current research is to improve the original approach by using ultrasound array beam formation. In this case, irradiated laser pulse generates acoustic waves on the top of a needle or a guidewire. These acoustic waves propagate along the metal surface. Then, the waves leak into the surrounding medium that can be detected by an ultrasound array transducer. The main challenge of the proposed method is to account for the propagation time of the guided waves for accurate beamforming. In other words, the echo arrival time between laser irradiation and array detection consists of two parts. One is the propagation time of the guided waves. The second component is the ultrasound propagation time of the leaky waves in the tissue. In principle, an image of the needle or the guidewire can be formed based on array beam formation after the propagation times on the metal are taken into consideration. Using the proposed beamforming method, results showed that the detection depth was up to 51 mm and the insertion angle was up to 47.3 degrees with needles of different diameters. On the other hand, results of the guidewires showed that the detection depth was up to 63 mm, the insertion angle was up to 56.31 degrees and the propagation distance of the guide waves was up to 1268 mm.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:00:27Z (GMT). No. of bitstreams: 1
ntu-108-R05945013-1.pdf: 8916342 bytes, checksum: 96dd32bafcc2feb8b79b41d2230fbb6b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 XIII
第一章緒論 1
1.1. 研究動機 1
1.2. 超音波穿刺導引 3
1.3. 光聲輔助超音波穿刺導引 5
1.4. 超音波輔助導引心血管導絲應用在冠狀動脈手術 8
1.5. 研究目標 11
第二章 超音波導波與漏溢聲波 12
2.1. 光聲效應原理 12
2.2. 超音波導波 13
2.2.1. 超音波導波 13
2.2.2. 管柱超音波導波 14
2.3. 漏溢聲波 19
2.4. 光聲方式產生超音波導波 19
第三章 利用漏溢聲波在二維平面上定位針 21
3.1. 超音波導波與漏溢聲波用於定位針方法 21
3.2. 漏溢聲波定位方法應用在不同角度的針位置定位 23
3.3. 漏溢聲波定位方法應用在不同深度的針位置定位 25
3.4. 漏溢聲波定位方法應用在不同大小的針位置定位 26
3.5. 漏溢聲波訊號的強度與激發雷射間的關係: 29
3.6. 漏溢聲波定位方法的結果與討論 30
第四章 實驗方法與實驗架構 35
4.1. 對超音波導波與漏溢聲波波束成像用於定位針與導絲端點方法 35
4.2. 對超音波導波與漏溢聲波進行波束成像用於定位針體或導絲體方法 37
4.3. 針與導絲的插入角度估算 39
4.4. 超音波波導頻散的現象與訊號的壓縮 42
4.5. 實驗架構 45
第五章 實驗結果與討論 46
5.1. 對超音波導波與漏溢聲波波束成像用於定位針方法實驗結果 46
5.1.1. 波束成像定位方法應用在不同角度的針尖位置定位 46
5.1.2. 波束成像定位方法應用在不同深度的針尖位置定位 49
5.1.3. 波束成像定位方法應用在不同粗細的針尖位置定位 52
5.1.4. 限制漏溢聲波漏溢位置強化針尖位置定位 57
5.2. 超音波導波與漏溢聲波用於定位導絲方法結果 59
5.2.1. 波束成像定位方法應用在不同角度的導絲芯棒尖端位置定位 59
5.2.2. 波束成像定位方法應用在不同深度的導絲芯棒尖端位置定位 66
5.2.3. 波束成像定位方法應用在長距離的導絲芯棒尖端位置定位 71
5.2.4. 波束成像定位方法應用在線圈尖端位置定位 77
5.2.5. 導波速度校正誤差影響討論 79
5.2.6. 傳遞距離對色散訊號以及相位速度探討 79
5.2.7. 導絲芯棒定位角度深度限制討論與比較 82
5.2.8. 降低超音波通道取樣數對定位結果的影響 83
5.2.9. 漏溢聲波訊號頻率與陣列探頭頻率響應分析 85
第六章 結論與未來展望 89
6.1. 結論 89
6.2. 未來展望 90
6.2.1. 對非直線的導絲進行定位: 90
6.2.2. 利用雷射產生之漏溢聲波進行三維針定位 91
參考文獻 95
dc.language.isozh-TW
dc.subject針導引穿刺zh_TW
dc.subject漏溢聲波zh_TW
dc.subject雷射機械波導zh_TW
dc.subject心導管導絲zh_TW
dc.subjectlaser-induced guided waveen
dc.subjectleaky acoustic waveen
dc.subjectimage-guided biopsyen
dc.subjectguidewireen
dc.title應用漏溢聲波波束成像技術進行影像導引zh_TW
dc.titleBeamforming for Laser Generated Leaky Acoustic Waves for Image Guidanceen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏齡(Po-Ling Kuo),葉佳倫(Chia-Lun Yeh),謝寶育(Bao-Yu Hsieh),沈哲州(Che-Chou Shen)
dc.subject.keyword漏溢聲波,雷射機械波導,針導引穿刺,心導管導絲,zh_TW
dc.subject.keywordleaky acoustic wave,laser-induced guided wave,image-guided biopsy,guidewire,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201900456
dc.rights.note有償授權
dc.date.accepted2019-02-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
8.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved