Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71417
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖
dc.contributor.authorLing-Hsuan Tsaien
dc.contributor.author蔡陵萱zh_TW
dc.date.accessioned2021-06-17T06:00:22Z-
dc.date.available2029-02-12
dc.date.copyright2019-02-19
dc.date.issued2019
dc.date.submitted2019-02-12
dc.identifier.citation[1] R. H Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), pp. 115-122 (1996).
[2] P. Pignoli, E. Tremoli, A. Poli, P. Oreste, and R. Paoletti, “Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging,” Circulation 74(6), pp. 1399-1406 (1986).
[3] R. R. Edelman, and S. Warach, “Magnetic resonance imaging,” N Engl J Med. 328(10), pp. 708-716 (1993).
[4] D. D. Sampson, and T. R. Hillman, “Optical coherence tomography, Lasers and Current Optical Techniques in Biology” ESP Comprehensive Series in Photosciences, Cambridge, UK, pp. 481-571 (2004).
[5] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,”Sci. 254(5053), pp. 1178-1181 (1991).
[6] D. D. Sampson, “Trends and prospects for optical coherence tomography,” Proc. of SPIE 5502, pp. 25-32 (2004).
[7] A. F. Fercher, W. Drexler, C K Hitzenberger, and T Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, pp. 239-304 (2003).
[8] Ch. Meier, “Optical Coherence Tomography OCT 3D Imaging in Medical Technology and Quality Control,” EPMT Lausanne (2011).
[9] S. L. Jacques, “Corrigendum: Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, pp. R37–R61 (2013).
[10] B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt express, 27(20), pp. 1800-1802 (2002).
[11] A.F. Fercher, C.K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt Commun. 185(1-3), pp. 57-64 (2000).
[12] B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101(1), pp.143-154 (1997).
[13] J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105(1), pp.41-48 (1987).
[14] https://homesecurity.press/quotes/market-optical-coherence-tomography.html.
[15] P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), pp.1086-1812 (2005).
[16] U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, ‘‘Spectroscopic optical coherence tomography,’’ Opt. Lett. 25(2), pp.111–113 (2000).
[17] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J Biomed Opt. 7(3), pp.457–463 (2002).
[18] Michael A. Choma, Marinko V. Sarunic, Changhuei Yang, and Joseph A. Izatt, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” Opt. express, 11(18), pp.2183-289 (2003).
[19] M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology, 12(10), pp. 1735-1746 (2005).
[20] Y.-Y. Li, Y.-W. Lee, T.-S. Ho, J.-H. Wang, I-C. Wu, T.-W. Hsu, Y.-T. Chen, and S.-L. Huang, “Spectroscopic characterization of Si/Mo thin-film stack at extreme ultraviolet range,” Opt. Lett. 43(16), pp.4029-4032 (2018).
[21] C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), pp.292(1)-292(10) (2015).
[22] H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett’s esophagus ,” Clin Endosc. 86(3), pp.476-484 (2017).
[23] H. M. Subhash, K. Neuhaus, R. Dsouza, J. Hogan, C. Wilson, and M. J. Leahy, “Smartphone based Multiple Reference Optical coherence tomography (MROTM) system,” Biomedical Optics conference paper, pp.26-30 (2014).
[24] S. A. Boppart, R. L. Shelton, N. Shemonski, “Smart Phone Attachment For 3-D Optical Coherence Tomography Imaging,” United State Patent US 9,638,511 B2 (2017).
[25] Z. Hu, and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), pp.3525-3527 (2007).
[26] G. Lan, G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,”Sci Rep. 7(42353), pp.1-8 (2017).
[27] V. J. Srinivasan, “High-speed Fourier domain Optical Coherence Tomography for Structural and Functional Imaging of the Retina,” Thesis of doctor philosophy, pp.8-9 (2008).
[28] C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J Biomed Opt. 4(1), pp.141–51 (1999).
[29] S. Jiao, M. Ruggeri, “Polarization effect on the depth resolution of optical coherence tomography,” J Biomed Opt., 13(6), pp.1-6 (2008).
[30] W.-C. Kuo, C.-M. Lai, Y.-S. Huang, C.-Y. Chang, and Y.-M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. express, 21(16), pp.19280-19291 (2013).
[31] M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. express, 12(11), pp.2404-2422 (2004).
[32] S. V. d. Jeught, A. Bradu, and A. Gh. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J Biomed Opt., 15(3), pp.030511(1)-(3) (2010).
[33] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J Biomed Opt., 7(3), pp.457-463 (2002).
[34] P. F. Escobar, J. L. Belinson, A. White, N. M. Shakhova, F. I. Feldchtein, M. V. Kareta, N. D. Gladkova, “Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva,” Int J Gynecol Cancer, 14(3), pp.470-474 (2004).
[35] C. Lamirel, N. Newman, V. Biousse, “The use of optical coherence tomography in neurology,” Rev Neurol Dis., 6(4), pp.E105-E120 (2009).
[36] E .Sattler, R. Kästle, J. Welzel. “Optical coherence tomography in dermatology,” J Biomed Opt., 18(6), pp.61224(1)-(6) (2013).
[37] D. Markl, P.Wahl, H. Pichler, S. Sacher, J. G.Khinast, “Characterization of the coating and tablet core roughness by means of 3D optical coherence tomography,” Int. J. Plast., 536(1), pp.459-466 (2018).
[38] W. Drexler, J. G. Fujimoto, “Optical coherence tomography: technology and applications,” Springer, Cham, Ch. 1, pp. 1-4 (2015).
[39] Y. P. d. León, J. L. Pichardo-Molina, and N. A. Ochoa, “Growth Kinetics of Concave Nanocubes Studied by Optical Coherence Tomography,” Plasmonics., 9(4), pp. 907-915 (2014).
[40] J. C. Y. Kah, T. H. Chow, B. K. Ng, S. G. Razul, M. Olivo, and C. J. R. Sheppard, “Concentration dependence of gold nanoshells on the enhancement of optical coherence tomography images: a quantitative study,” Appl. Opt., 48(1), pp. D96-D108 (2009).
[41] R. Grombe, L. Kirsten, M. Mehner, T. P.J. Linsinger, H. Emons, and E. Koch, “Feasibility of non-invasive detection of engineered nanoparticles in food mimicking matrices by Optical Coherence Tomography ,” Food Chem., 153, pp. 444-449 (2014).
[42] R. C. Niemeier, S. Etoz, D. A. Gil, M.C. Skala, C. L. Brace, and J. D. Rogers, “Quantifying optical properties with visible and near-infrared optical coherence tomography to visualize esophageal microwave ablation zones,” Biomed. Opt. Express, 9(4), pp. 1648-1663 (2018).
[43] J. M. Schmitt, A. Knüttel, and R. F. Bonner, ‘‘Measurement of optical properties of biological tissues by low-coherence reflectometry,’’ Appl. Opt. 32(30), pp. 6032–6042 (1993).
[44] M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, ‘‘Multiple scattering in optical coherence microscopy,’’ Appl. Opt. 34(41), pp. 5699 – 5707 (1995).
[45] L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A., 17(3), pp. 484-490 (2000).
[46] V. M. Koach D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, “Determination of the scattering anisotropy with optical coherence tomography,” Opt. Express, 19(7), pp.6131-6140 (2011).
[47] C. F. Bohren, and D. R. Huffman, “Absorption and Scattering of Light by Small Particles,” Wiley & Sons, New York (1983).
[48] H. C. van de, “Light Scattering by Small Particles,” Wiley & Sons, New York, (1957).
[49] V. D. Nguyen, D. J. Faber, E. van der Pol, T. G. van Leeuwen, and J. K. Kalkman, “Dependent and multiple scattering in transmission and backscattering optical coherence tomography,” Opt. Express, 21(24), pp.29145-29156 (2013).
[50] J. K. Percus, and G. J. Yevick, “Analysis of classical statistical mechanics by means of collective coordinates,” Phys. Rev. 110(1), pp. 1-13 (1958).
[51] M. Almasian N. Bosschaart, T. G. V. Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), pp. 121314(1)-(11) (2015).
[52] B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, and T. Lasser, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A, 22(7), pp.1369-1378 (2005).
[53] A. Tycho, T. M. Joergensen, and L. Thrane, “Focusing problem in OCT: comparison of Monte-Carlo simulations, the extended Huygens-Fresnel principle, and experiments,” Proc. SPIE, 3915, pp.25-35 (2000).
[54] D. J. Faber, T. G. V. Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?,” Opt. Lett. 34(9), pp. 1435-1437 (2009).
[55] B. Bill, N. Morris, M. Dubey, Q. Wang, and Q. H. Fan, “Electrophoretic deposited TiO2 pigment-based back reflectors for thin film solar cells,” Optics Express., 23(3), pp. A71-A82 (2015).
[56] B. F. Huang, D. Chen, X. L. Zhang, R. A. Caruso, and Y.-B. Cheng, “Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye-Sensitized Solar Cells,” Adv. Funct. Mater., 23(8), pp. 1301-1305 (2010).
[57] A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllyla, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D: Appl. Phys., 38(15), pp. 2564–2570 (2005).
[58] G. Veerappan, D. W. Jung, J. Kwon, J. M. Choi, N. Heo, G.-R. Yi, and J. H. Park, “Multi-Functionality of Macroporous TiO2 Spheres in Dye-Sensitized and Hybrid Heterojunction Solar cells,” Langmuir., 30(11), pp. 3010-3018 (2014).
[59] S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells., 90(9), pp. 1176-1188 (2006).
[60] W. Peng, and L. Han, “Hexagonal TiO2 microplates with superior light scattering for dye-sensitized solar cells,” J. Mater. Chem., (22), pp. 20773-20777 (2012).
[61] L. P. Zhou, G. Y.Wu, H. J. Wei, Z. Y. Guo , H. Q. Yang, Y. H. He, S. S. Xie, and Y. Liu, “Influence of different sized nanoparticles combined with ultrasound on the optical properties of in vitro normal and cancerous human lung tissue studied with OCT and diffuse reflectance spectra,” Laser Phys., 24(11), pp. 115606-115615 (2014).
[62] D. Levitz, L. Thrane, M. H. Frosz, and P. E. Andersen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Optics Express., 12(2), pp. 249-847259 (2004).
[63] S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun., 15, pp. 2011–2013 (2005).
[64] J.-C. Auger, V. A. Martinez, and B. Stout, “Theoretical study of the scattering efficiency of rutile titanium dioxide pigments as a function of their spatial dispersion,” J. Coat. Technol. Res., 6(1), pp. 89–97 (2009).
[65] H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependent scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta., 361(3), pp. 677–683 (2008).
[66] A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun., 117(1-2), pp. 43-48 (1995).
[67] W. Drexler, J. G. Fujimoto, “Optical coherence tomography: technology and applications,” Springer, Cham, Ch. 2, pp. 65-90 (2015).
[68] S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Optics Express., 18(23), pp. 24395-24404 (2010).
[69] S. Van der Jeught, A . Bradu, AG. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.,” J. Biomed. Opt. 15(3), pp. 030511(1)-(3) (2010).
[70] G. R. Goldberg, P. Ivanov, N. Ozaki, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium Nitride Light Sources for Optical Coherence Tomography,” Proc. SPIE, 10104, pp.1-7 (2018).
[71] M. Kamal, S. Narayanswamy, and M. Packirisamy, “Design of a spectrometer for all-reflective optics based line scan Fourier domain optical coherence tomography,” Proc. SPIE, 7750, pp.1-6 (2010).
[72] H. Hosseiny, C. C. Rosa, “Design and optimization of a spectrometer for Spectral Domain optical Coherence Tomography,” Proc. SPIE, 9286, pp.1-7 (2014).
[73] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26(9), pp. 608-610 (2001).
[74] Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), pp. 182-184 (2003).
[75] A. T. Semenov, V. R. Shidlovski, S. A. Safin, V. P. Konyaev, and M. V. Zverkov, “Superluminescent diodes for visible (670 nm) spectral range based on AlGaInP/GaInP heterostructures with tapered grounded absorber,” Electron. Lett. 29(6), pp. 530-532 (1994).
[76] A. T. Semenov, V. R. Shidlovski, “Very highpower, broad and flat spectrum superluminescent diodes and fiber modules for OCT applications,” BIOS 2000, Photonics West ’99, pp. 3915-3943 (2000).
[77] V. K. Batovrin, I. A. Garmash, A. T. Semenov, V. R. Shidlovsky, M. V. Shramenko, and S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length”, Electron. Lett., 31(4), pp.314-315 (1995).
[78] C.-F. Lin, and B.-L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes ”, Appl. Phys. Lett. 71(12), pp.1598-1600 (1997).
[79] P. I. Lapin, D. S. Mamedov, S. D. Yakubovich, and M. Wojtkowski, J.G. Fujimoto, “Novel Near- IR broad-band light sources for optical coherence tomography based on superluminescent diodes ”, Proc. SPIE, 5861, pp.1–4 (2005).
[80] Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z.-G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum ” Opt. Quantum Electron. 31(22), pp.1235-1246 (1999).
[81] T.-K. Ong, M. Yin, Z. Yu, Y.-C. Chang, and Y.-L. Lam, “High performance quantum well intermixed superluminescent diodes ” Meas. Sci. Technol. 15(8), pp.1591-1595 (2004).
[82] L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers ” Electron. Lett. 41(1), pp.1-2 (2005).
[83] J. W. Goodman, Statistical Optics , John Wiley & Sons, (1985).
[84] A. M. Rollins, and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), pp.1484-1486 (1999).
[85] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher “Performance of fourier domain vs. time domain optical coherence tomography ,” Opt. Express. 11(8), pp.889-894 (2003).
[86] L.-H. Tsai, P. N. Yang, Y.-C. Shih, K.-F. Lin, C.-C. Wu, and H. Y. Lin, “Size-dependent multiple-scattering effects of mesoporous TiO2 beads distinguished by optical coherence tomography,” IEEE Photonics J, 9(5), pp. 6102410(1)-(10) (2017).
[87] T. Hao, and R. E. Riman, “Calculation of interparticle spacing in colloidal system,” J Colloid Interface Sci., 297(1), pp.374-377 (2006).
[88] Milton Kerker, “Lorenz–Mie Scattering by Spheres: Some Newly Recognized Phenomena ,” Aerosol Sci. Technol., pp.275-291 (1982).
[89] C. Mätzler, “MATLAB functions for Mie scattering and absorption ,” Institut für Angewandte Physik, pp.1-18 (2002).
[90] Z. Xu, A.-K. Somani, and Y. L. Kim, “Scattering anisotropy weighted mesoscopic imaging ,” J. Biomed. Opt. 17(9), pp. 09050(1)-(3) (2012).
[91] A. Taflove, and S. C. Hagness, “Computational electrodynamics: The finite difference time-domain method,” Artech House, Boston (1995).
[92] J. He, A. Karlsson, J. Swartling, and S. A.-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21(10), pp.1953-1961 (2004).
[93] M. S. Starosta, and A. K. Dunn, “Far-field superposition method for three-dimensional computation of light scattering from multiple cells,” J. Biomed. Opt. 15(5), pp.055006(1)-(9) (2010).
[94] J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), pp.024022(1)-(10) (2005).
[95] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans Antennas Propag. 14(3), pp.302-307 (1966).
[96] S. Hore, C. Vetter, R. Kerna, H. Smitc, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energ. Mat. Sol. Cells. 90(9), pp.1176-1188 (2006).
[97] H. I. Elim B. Cai, Y. Kurata, O. Sugihara, T. Kaino, T. Adschiri, A.-L. Chu, and N. Kambe, “Refractive index control and Rayleigh scattering properties of transparent TiO2 nanohybrid polymer,” J. Phys. Chem. B 113(30), pp.10143-10148 (2009).
[98] J. Muller G. Parent, G. Jeandel, and D. Lacroix, “Finite-difference time-domain and near-field-to-far-field transformation in the spectral domain: application to scattering objects with complex shapes in the vicinity of a semi-infinite dielectric medium,” J. Opt. Soc. Am. A 28(5), pp.868-878 (2011).
[99] L.-H. Tsai, P. N. Yang, C.-C. Wu, and H. Y. Lin, “Quantifying scattering coefficient for multiple scattering effect by combining optical coherence tomography with finite-difference time-domain simulation method,” J. Biomed. Opt. 23(8), pp.086004(1)-(9) (2018).
[100] I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem., 21(2), pp.532–538 (2011).
[101] L. E. Mcneil, and R. H. French, “Multiple scattering from rutile TiO2 particles,” Acta mater., 48(18-19), pp.4571-4576 (2000).
[102] L. E. Mcneil, A. R. Hanuska, and R. H. French, “Orientation dependence in near-field scattering from TiO2 particles,” Appl. Opt., 40(20), pp.3727-3736 (2001).
[103] M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex Photonic Structures for Light Harvesting,” Adv. Optical Mater., 3(6), pp.722-743 (2015).
[104] S. A. Prahl, “Mie Scattering Calculators,” https://omlc.org/calc/mie_calc.html (2006).
[105] J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Optics 27(19), pp.4027-4033 (1998).
[106] X. Li, A. Taflove, V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering bbjects,” IEEE Antennas Wireless Propag. Lett. 4(1), pp.35-38 (2005).
[107] L. E. McNeil, A. R. Hanuska, and R. H. French, “Orientation dependence in near-field scattering from TiO2 particles,” Appl. Optics 40(22), pp.3726-3736 (2001).
[108] J. Piskozub, D. McKee, “Effective scattering phase functions for the multiple scattering regime,” Opt. Express 19(5), pp.4986-4794 (2011).
[109] D. Sikdar, W. Cheng, and M. Premaratne, “Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering ,” J. Appl. Phys. 117(8), pp.083101(1)-(14) (2015).
[110] W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric Core Shell Nanoparticles,” J. ACS Nano. 6(6), pp.5489-5497 (2012).
[111] A. Ammar, R. Burman, H. Ghalila, Z. B. Lakhdar, L.S. Varadharajan, S. Lahmar, and V. Lakshminarayanan, “Optics simulation with Python: diffraction,” Proc. of SPIE. 9793, pp.97930K(1)-(6) (2015).
[112] P. Gans, J. B. Gill, “Smoothing and differentiation of spectroscopic curves using spline functions,” Appl. Spectrosc. 38(3), pp.370-376 (1984).
[113] R.A. Fisher, D. W. Cutler, “Statistical methods for research workers, ” Oliver and Boyd, Edinburgh. 13th Ed. (1958).
[114] S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells” Chem. Commun. 15, 2011 (2005).
[115] G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, D. S. Wiersma, “Light transport and localization in two-dimensional correlated disorder,” Phys. Rev. Lett. 112(143901), pp.1-5 (2014).
[116] B. Karamata, M. Laubscher, M. Leutenegger,S. Bourquin,T. Lasser,and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling” J. Opt. Soc. Am. 22(7), pp.1369-1379 (2005).
[117] S. Malektaji, I. T. Lima, and S. S. Sherif, “Monte Carlo simulation of optical coherence tomography for turbid media with arbitrary spatial distributions” J. Biomed. Opt. 19(4), pp.046001(1)-(8) (2014).
[118] S. Tanev, W. Sun,J. Pond,VV. Tuchin, and VP. Zharov, “Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents: FDTD simulation of light–cell interaction,” J. Biophotonics 2(8-9), pp.505-520 (2009).
[119] E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation” Phys. Med. Biol. 49(9), pp.1595-1607 (2004).
[120] Ji Yi, Andrew J. Radosevich, Jeremy D. Rogers, Sam C.P. Norris, İlker R. Çapoğlu, Allen Taflove, and Vadim Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?,” Optics Express., 21(7), pp. 9043-9049 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71417-
dc.description.abstract光學同調斷層掃描光學系統是近年來其中一種非常具有潛力的造影診斷的光學技術.此項技術在次波長的解析度下可以快速而且有效率的提供生物樣本的縱向結構,這樣的優點在生物醫學領域中可以快速的診斷並且提高治療率。在傳統的光學同調斷層掃描的系統中是以麥克森干涉儀為基本的光學架構,所提供的訊號主要來自系統參考端上反射回來的光訊號和樣品端背向散射返回的背向散射訊號進行干涉所產生之干涉訊號.此光學系統中,光源特定選擇低同調光源以使系統得以達到高解析度的優勢。除此之外,在光學同調斷層掃描系統中,優點在於可以提供活體生物樣本的縱向剖面的二維縱向結構資訊,更進一步結合二維資訊可以清楚的提供整個待測樣本的三維結構而不具有破壞性.因此此光學造影技術成為近年來非常熱門的診斷技術之一。
在研究中,我們將焦點著重在如何從所量測到的光學同調訊號中萃取出我們想要的光學散射資訊,由於精確的分析及量化樣本中所存在的光學資訊仍屬於一個非常具有挑戰的議題,因此近年來在此領域的研究也相當熱門。此研究內容中,我們利用了不同尺寸二氧化鈦奈米粒子薄膜作為待測物替代生物樣本先進行研究.在光學同調系統中所測得之光學散射特性裡,其中包含單重散射及多重散射。接著利用衍伸型惠更斯原理代入光學參數,可以得到在待測樣本中單重散射及多重散射所提供之比例,此項分析功能可以應用於非生物領域中進行快速的量測技術。更進一步,為了更精準的獲得及量化光學散射資訊。我們將光學同調斷層掃描系統結合時域有限差分法的模擬方式,發展出一個新的分析流程。此模擬方式可以提供在樣本中產生複雜光子交互作用的近場和遠場圖。作為第三方的分析輔助工具獲取非均向散射因子,再進一步利用衍生型惠更斯原理計算出待側物的散射係數。以上內容將在此論文中一一討論。
zh_TW
dc.description.abstractOptical Coherence Tomography (OCT) system is one of a potential image diagnostic technique to explore the diversity in bio-cell for subwavelength structures (microstructure) or quickly diagnosing the diseases for improving the cure rate in biomedical fields. In general OCT, the OCT signals against depth can mainly provide by measuring interference patterns from reference arm and the backscattering light of samples at optical system, and the high axial resolution can be provided with low coherence light source. The features of OCT can approach the cross-section images techniques (2D) or 3D-image by combining A-scans (axial, mode) and B-scans (lateral, mode)to clearly obtain the axial microstructures for biological tissues. In the field for extracting the optical information of measured sample within the OCT signal have been a popular issue recently. In this work, we are going to study this issue and corresponding applications by mainly utilized the mesoporous TiO2 beads films with diameter size for 20, 150, 300, and 500 nm as our non-biological sample and discuss the optical scattering properties of single- and multiple- scattering effects. With the extended Huygens Fresnel theory, the contribution of single- and multiple- scattering composition can be provided. Further, for precisely distinguishing and quantifying the optical properties of scattering coefficient in measured samples, we provide a new analysis flow combining the FDTD simulation method with OCT. The light scattering interactions in near- and far-field patterns between adjacent TiO2 beads can be determined and show in FDTD simulation method to identify the two optical parameters of anisotropy g factor and scattering coefficient in EHF model.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:00:22Z (GMT). No. of bitstreams: 1
ntu-108-D99941001-1.pdf: 7629338 bytes, checksum: 15e410a4d86cabbec75953698c81d050 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 Introduction and Background 1
1.1 Overview 1
1.2 Motivation 8
1.3 Content 11
Chapter 2 The Fundamental Theory 13
2.1 Spectral/Fourier domain OCT 13
2.2 Signal Processing 18
2.2.1 Recalibration (Re-sampling) 18
2.2.2 Axial resolution and imaging depth in OCT system 19
2.2.3 Lateral resolution in OCT system 22
2.3 Spectrometer design 25
2.3.1 Diffraction gratings 25
2.3.2 Light source of OCT system 27
2.4 Noise and Sensitivity (SNR) 28
2.4.1 Shot noise limit 29
2.4.2 Excess Photon Noise 30
2.4.3 Receiver Noise (CCD Noise) 31
Chapter 3 Method and Experimental Setup 34
3.1 Spectral domain OCT system setup (SD-OCT) 34
3.2 Preparation of mesoporous TiO2 beads samples 36
3.3 Scattering properties 37
3.3.1 Mie scattering model (Single scattering effect) 37
3.3.2 Multiple scattering effect 41
3.4 Extended-Huygens Fresnel model 41
3.5 Finite-difference time-domain method (FDTD) 43
Chapter 4 Size-Dependent Multiple-Scattering Effects of Mesoporous TiO2 Beads Distinguished by Optical Coherence Tomography 47
4.1 Overview 47
4.2 Results and Discussions 48
4.2.1 Characterization of mesoporous TiO2 beads 48
4.2.2 Diffused reflectance spectrum of mesoporous TiO2 samples 49
4.2.3 Determination of multiple scattering effects 51
4.3 Summary 57
Chapter 5 Scattering coefficient quantification on Optical Coherence Tomography combined with FDTD simulation method for multiple scattering effect 59
5.1 Overview 59
5.2 Results and discussions 60
5.2.1 Scattering phase function of single TiO2 bead simulated by FDTD 60
5.2.2 Inter-particle spacing effects of near-field scattering patterns 61
5.2.3 Inter-particle distance effects dependent Phase function 62
5.2.4 Anisotropy factors g with different inter-particle spacing 65
5.2.5 Fitting the optical scattering properties in EHF theory 66
5.3 Summary 70
Chapter 6 Conclusions and Future Works 71
6.1 Conclusions 71
6.2 Future Works 72
REFERENCES 74
dc.language.isoen
dc.subject光學同調斷層掃描技術zh_TW
dc.subject散射性質zh_TW
dc.subject米氏散射zh_TW
dc.subject單重散射zh_TW
dc.subject多重散射zh_TW
dc.subject衍生型惠更斯原理zh_TW
dc.subjectOptical coherence tomographyen
dc.subjectScattering effecten
dc.subjectExtended Huygens Fresnel modelen
dc.subjectSingle- and Multiple-scattering effecten
dc.subjectMie scattering modelen
dc.title低同調光學干涉系統應用於材料散射量測特性之研究zh_TW
dc.titleOptical scattering properties analyzed by Low Coherence Tomography systemen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.coadvisor吳忠幟
dc.contributor.oralexamcommittee黃升龍,黃定洧,李翔傑
dc.subject.keyword光學同調斷層掃描技術,散射性質,衍生型惠更斯原理,多重散射,單重散射,米氏散射,zh_TW
dc.subject.keywordOptical coherence tomography,Scattering effect,Extended Huygens Fresnel model,Single- and Multiple-scattering effect,Mie scattering model,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201900435
dc.rights.note有償授權
dc.date.accepted2019-02-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
7.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved