Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71394
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 丁照棣(Chau-Ti Ting) | |
dc.contributor.author | Wei-Hao Huang | en |
dc.contributor.author | 黃瑋豪 | zh_TW |
dc.date.accessioned | 2021-06-17T05:59:59Z | - |
dc.date.available | 2020-12-25 | |
dc.date.copyright | 2020-12-25 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-11-27 | |
dc.identifier.citation | Aboalola, D., and V. K. M. Han 2017 Different Effects of Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-2 on Myogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells Int 2017:8286248.
American Diabetes Association 2020 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 43(Suppl 1):S14-S31. Arsenijevic, Y., and S. Weiss 1998 Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor. J Neurosci 18(6):2118-28. Assimacopoulos-Jeannet, F., et al.1995 In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism 44(2):228-33. Balestrieri, M. L., et al. 2013 Poor glycaemic control in type 2 diabetes patients reduces endothelial progenitor cell number by influencing SIRT1 signalling via platelet-activating factor receptor activation. Diabetologia 56(1):162-72. Biteau, B., C. E. Hochmuth, and H. Jasper2011 Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 9(5):402-11. Bonner-Weir, S., et al. 1989 Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes 38(1):49-53. Brogiolo, W., et al. 2001 An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11(4):213-21. Brookheart, R. T., et al. 2017 High-sucrose-induced maternal obesity disrupts ovarian function and decreases fertility in Drosophila melanogaster. Biochim Biophys Acta Mol Basis Dis 1863(6):1255-1263. Chen, C., J. Jack, and R. S. Garofalo 1996 The Drosophila insulin receptor is required for normal growth. Endocrinology 137(3):846-56. Chen, F., et al. 2017 Oxidative Stress in Stem Cell Aging. Cell Transplant 26(9):1483-1495. Choi, N. H., E. Lucchetta, and B. Ohlstein 2011 Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proc Natl Acad Sci U S A 108(46):18702-7. Christensen, A. A., and M. Gannon 2019 The Beta Cell in Type 2 Diabetes. Curr Diab Rep 19(9):81. Cooke, M. S., et al. 2003 Oxidative DNA damage: mechanisms, mutation, and disease. Faseb j 17(10):1195-214. Cushman, S. W., and L. J. Wardzala 1980 Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255(10):4758-62. de Cuevas, M., and A. C. Spradling 1998 Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125(15):2781-9. Dong, L., et al. 2011 Insulin modulates ischemia-induced endothelial progenitor cell mobilization and neovascularization in diabetic mice. Microvasc Res 82(3):227-36. Drowley, L., et al. 2010 Cellular antioxidant levels influence muscle stem cell therapy. Mol Ther 18(10):1865-73. Felber, J. P., et al. 1987 Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes 36(11):1341-50. Fernandez, R., et al. 1995 The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. Embo j 14(14):3373-84. Fiorentino, T. V., et al. 2013 Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19(32):5695-703. Fujimaki, S., et al. 2015 Diabetes and stem cell function. Biomed Res Int 2015:592915. Garofalo, R. S. 2002 Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol Metab 13(4):156-62. Garvey, W. T., et al. 1998 Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101(11):2377-86. Harris, L. A., J. R. Skinner, and N. E. Wolins 2013 Imaging of neutral lipids and neutral lipid associated proteins. Methods Cell Biol 116:213-26. Hsu, H. J., L. LaFever, and D. Drummond-Barbosa 2008 Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila. Dev Biol 313(2):700-12. Ichijo, H., et al. 1997 Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275(5296):90-4. Kannan, K., and Y. W. Fridell 2013 Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front Physiol 4:288. Kiger, Amy A., Helen White-Cooper, and Margaret T. Fuller 2000 Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407(6805):750-754. LaFever, L., and D. Drummond-Barbosa 2005 Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309(5737):1071-3. Li, L., et al. 2014 Aging increases the susceptivity of MSCs to reactive oxygen species and impairs their therapeutic potency for myocardial infarction. PLoS One 9(11):e111850. Li, P., et al. 2017 Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis. Stem Cells Int 2017:7371615. Livak, K. J., and T. D. Schmittgen 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-8. Lu, W., et al. 2012 Niche-associated activation of rac promotes the asymmetric division of Drosophila female germline stem cells. PLoS Biol 10(7):e1001357. Luzzo, K. M., et al. 2012 High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One 7(11):e49217. Marchetti, V., et al. 2006 Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 55(8):2231-7. McClelland Descalzo, D. L., et al. 2016 Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/beta-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports 7(1):55-68. Musselman, L. P., et al. 2011 A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech 4(6):842-9. Na, J., et al. 2013 A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet 9(1):e1003175. Nassel, D. R., et al. 2013 Factors that regulate insulin producing cells and their output in Drosophila. Front Physiol 4:252. National Diabetes Data Group 1979 Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. Diabetes 28(12):1039-57. Nishigaki, I., et al. 1981 Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem Med 25(3):373-8. Rolo, A. P., and C. M. Palmeira 2006 Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212(2):167-78. Samuel, V. T., and G. I. Shulman 2016 The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126(1):12-22. Scanga, S. E., et al. 2000 The conserved PI3'K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19(35):3971-7. Schieber, M., and N. S. Chandel 2014 ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453-62. Shapira, S. N., and H. R. Christofk 2020 Metabolic Regulation of Tissue Stem Cells. Trends Cell Biol 30(7):566-576. Sidossis, L. S., et al. 1996 Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J Clin Invest 98(10):2244-50. Song, X., et al. 2002 Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296(5574):1855-7. Spradling, A. C., et al. 1997 The Drosophila germarium: stem cells, germ line cysts, and oocytes. Cold Spring Harb Symp Quant Biol 62:25-34. Stenbit, Antine E., et al. 1997 GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nature Medicine 3(10):1096-1101. Stranahan, A. M., et al. 2008 Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11(3):309-17. Susztak, K., et al. 2006 Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55(1):225-33. Talchai, C., et al. 2012 Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150(6):1223-34. Teleman, A. A. 2009 Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem J 425(1):13-26. Teleman, Aurelio A., Sushmita Maitra, and Stephen M. Cohen 2006 Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes development 20(4):417-422. Tikhanovich, I., et al. 2014 Regulation of FOXO3 by phosphorylation and methylation in hepatitis C virus infection and alcohol exposure. Hepatology 59(1):58-70. Tothova, Z., et al. 2007 FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325-39. Turley, S., et al. 2003 Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med 198(10):1527-37. Volpe, Caroline Maria Oliveira, et al. 2018 Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell death disease 9(2):119-119. Wall, S. R., and G. D. Lopaschuk 1989 Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta 1006(1):97-103. Wang, X., W. R. Chen, and D. Xing 2012 A pathway from JNK through decreased ERK and Akt activities for FOXO3a nuclear translocation in response to UV irradiation. J Cell Physiol 227(3):1168-78. Wong, M. D., Z. Jin, and T. Xie 2005 Molecular mechanisms of germline stem cell regulation. Annu Rev Genet 39:173-95. Xie, T., and A. C. Spradling 2000 A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490):328-30. Xu, C., et al. 2017 Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut. Elife 6. Yu, S., G. Zhang, and L. H. Jin 2018 A high-sugar diet affects cellular and humoral immune responses in Drosophila. Exp Cell Res 368(2):215-224. Zhang, W. J., et al.2008 Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurol Scand 117(3):205-10. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71394 | - |
dc.description.abstract | 幹細胞能維持組織的恆定。除了組織內在的信號外,飲食也會影響幹細胞的功能。高糖飲食通常會導致肥胖,而肥胖後來可能發展為2型糖尿病,這是一種組織無法對胰島素作出反應 (insulin resistance,胰島素抵抗)導致血糖增加的慢性代謝疾病。然而,目前尚不清楚高糖飲食是否會損害幹細胞功能。我利用被研究得很清楚的果蠅卵巢生殖幹細胞來探討高糖飲食是否會影響幹細胞。我發現在果蠅產生胰島素抗性之前,高糖飲食就降低了果蠅卵巢生殖幹細胞(GSCs)的增生。高糖飲食餵養一周會導致脂肪細胞累積油滴(肥胖症),改變胰島素基因的轉錄,同時導致卵巢縮小,降低產卵量和減少GSC分裂,但是並不會造成胰島素抗性的產生。相反的,餵食高糖後都會增加對胰島素敏感度 (insulin sensitivity); 不論母果蠅有沒有交配,都會增加果蠅對胰島素的敏感度,這個結果顯示有沒有交配不會影響母果蠅對胰島素的反應。有趣的是高糖飲食餵食的GSCs 累積高量的活性氧基(reactive Oxygen species),這可能會降低通過JNK途徑的細胞週期進程。我們的結果顯示,在2型糖尿病發生之前,高糖飲食會阻礙GSC功能,這種現象可能適用於不同物種的其他幹細胞系統。 | zh_TW |
dc.description.abstract | Stem cells maintain tissue homeostasis throughout the adult lifespan. In addition to tissue-intrinsic signals, diet also affects stem cell function. A high-sugar diet often induces obesity, which can later progress to type 2 diabetes, a chronic metabolic disorder that involves insulin resistance and high blood sugar. However, it is not clear if and how high-sugar diet impairs stem cell function. Here, I report that a high-sugar diet decreases proliferation in Drosophila ovarian germline stem cells (GSCs) before insulin resistance occurs. One week of high-sugar diet feeding induces oil droplet accumulation in fat body (obesity) and alters insulin transcripts, while decreasing ovary size, egg production and GSC division in the absence of insulin resistance. On contrary, flies fed with high-sugar diet display increased insulin sensitivity. This increased response to insulin is observed in female flies with or without mating, suggesting that mating does not affect flies in response to insulin. Instead of insulin signaling impairment, GSCs under high-sugar diet display high ROS levels, which may decrease cell cycle progression via the JNK pathway. Interestingly, taken together, our results show that GSC function is impeded by high sugar levels prior to the onset of type 2 diabetes, and this phenomenon may apply to other stem cell systems across different species. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:59Z (GMT). No. of bitstreams: 1 U0001-2611202019445600.pdf: 3485565 bytes, checksum: 9fe23d1219853f1ea60a71344fab438d (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝…………………………………………………………………………………….i Abstract in Chinese………………………………………………………………….ii Abstract………………………………………………………………………………..iii List of contents………………………………………………………………………..iv List of figures…………………………………………………………………………...vi List of table……………………………………………………………………………vii 1. Introduction………………………………………………………………….……1 1.1 Type II diabetes is a metabolic disorder and associate with several complications……………………………………………………………...1 1.2 The animal models of type II diabetes show dysfunctional stem cells/ or progeny………………………...………………………………….………….2 1.3 Insulin/IGF signaling, a highly conserved signaling pathway, maintains stem cells in many different systems…………..…………………………...…….2 1.4 The Drosophila ovary houses well-characterized GSCs……………..………3 1.5 The Drosophila model of type II diabetes………………...………………...4 2. Materials and Methods………………………………………………………….5 2.1 Drosophila strain and culture……………………………………………….5 2.2 RNA extraction……………………………………………………………...5 2.3 cDNA synthesis and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)……...……………………………………………………..5 2.4 Protein extraction and Western blots...……...………………………………6 2.5 Immunostaining………………………...…………………………….7 2.6 BrdU incorporation…..……………………………………………………..8 2.7 DHE staining and signal quantification ……………………………………8 2.8 BODIPI staining………………………………………………………….8 2.9 Image analysis…………..…………………………………………………..9 3. Results…………………………………………………………..………………10 3.1 A diet containing sucrose higher than 0.7 M shortened the lifespan of mated flies……………………………….………...……………………………..10 3.2 dilp3 and 5, but not dilp2 and InR transcripts are increased in the brain of flies fed with high-sugar diets………………………………………..……..10 3.3 High-sugar diets induce lipid droplet accumulation in adipocytes………10 3.4 A high-sugar diet increases insulin sensitivity female flies………....11 3.5 A high-sugar diet reduces egg production and ovary size…………..….11 3.6 One-week high-sugar diet treatment reduces GSC proliferation……...……12 3.7 A high-sugar diet causes p-Akt increased in GSCs……………….……...12 3.8 A high-sugar diet induces reactive oxygen species (ROS) accumulation in GSCs…………………………………………………………………..12 3.9 Virgin females fed with a high-sugar diet remain a similar response to insulin compared to mated females…………………………………………………13 4. Discussion……………………………………………………………………….14 4.1 A high-sugar diet induces ROS, which might activate the JNK pathway to inhibit cell proliferation…..………………………………...………………14 4.2 One-week high-sugar treatment might be a potential pre-diabetes model for studying the involved molecular mechanisms…………...…………..……..15 4.3 The effects of a high-sugar diet might have cell type-specific responses…16 4.4 Summary…………………………………………………………………16 5. References……………………………………………………………………….17 | |
dc.language.iso | en | |
dc.title | 高糖飲食降低卵巢生殖幹細胞的增生和胰島素抵抗無關 | zh_TW |
dc.title | High-sugar diet decreases ovarian germline stem cell proliferation independently of insulin resistance | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 許惠真(Hwei-Jan Hsu) | |
dc.contributor.oralexamcommittee | 詹智強(Chih-Chiang Chan),吳瑞菁(Jui-Ching Wu),李宜靜(Yi-Ching Lee) | |
dc.subject.keyword | 幹細胞,糖尿病, | zh_TW |
dc.subject.keyword | Stem cell,Diabetes, | en |
dc.relation.page | 36 | |
dc.identifier.doi | 10.6342/NTU202004366 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-11-30 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
Appears in Collections: | 生命科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-2611202019445600.pdf Restricted Access | 3.4 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.