請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71389完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范致豪(Chihhao Fan) | |
| dc.contributor.author | Jyun-Gu Lin | en |
| dc.contributor.author | 林俊谷 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:59:54Z | - |
| dc.date.available | 2024-02-15 | |
| dc.date.copyright | 2019-02-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-13 | |
| dc.identifier.citation | Ahmad, M., Teel, A. L., Furman, O. S., Reed, J. I., Watts, R. J. (2012). Oxidative and Reductive Pathways in Iron-Ethylenediaminetetraacetic Acid–Activated Persulfate Systems. Journal of Environmental Engineering, 138(4), 411-418.
Aiken, G. R., McKnight, D. M., Wershaw, R. L., MacCarthy, P. (1985). Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization. Wiley, New York. Akbari, A., Sadani, M., Amin, M. M., Teimouri, F., Khajeh, M., Mahdavi, M., Hadi, M. (2018). Managing sulfate ions produced by sulfate radical-advanced oxidation process using sulfate-reducing bacteria for the subsequent biological treatment. Journal of Environmental Chemical Engineering, 6(5), 5929-5937. Alalm, M. G., Tawfik, A., Ookawara, S. (2015). Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. Journal of Environmental Chemical Engineering, 3(1), 46-51. Andreozzi, R., Caprio, V., Marotta, R., Vogna, D. (2003). Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Research, 37(5), 993-1004. Anipsitakis, G. P. and Dionysiou, D. D. (2004). Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environmental Science & Technology, 38(13), 3705-3712. Babuponnusami, A., Muthukumar, K. (2011). Degradation of phenol in aqueous solution by Fenton, sono-Fenton, Sono-photo-Fenton methods. Clean-Soil Air Water, 39, 142-147. Bales, J. R., Nlcholson, J. K., Sadler, P. J. (1985). Two-Dimensional Proton Nuclear Magnetic Resonance “Maps” of Acetaminophen Metabolites in Human Urine. Clinical Chemistry, 31(5), 757-763. Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., Rodriguez, J. J. (2008). An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology and Biotechnology, 83, 1323-1338. Behrman, E. J., Dean, D. H. (1999). Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate1) in polyacrylamide gel electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications, 723, 325-326. Benitez, F. J., Acero, J. L., Real, F. J., Leal, A. I. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Research, 35, 1338-1343. Bolto, B., Dixon, D., Eldridge, R. (2004). Ion exchange for the removal of natural organic matter. Reactive and Functional Polymers, 60, 171-182. Bu, L., Shi, Z., Zhou, S. (2016). Modeling of Fe(II)-activated persulfate oxidation using atrazine as a target contaminant. Separation and Purification Technology, 169(1), 59-65. Carmichael, A. J., Makino, K., Riesz, P. (1984). Quantitative Aspects of ESR and Spin Trapping of Hydroxyl Radicals and Hydrogen Atoms in Gamma-Irradiated Aqueous Solutions. Radiation Research, 10(2), 222-234. Chen, F., Li, Y., Guo, L., Zhang, J. (2009). Strategies comparison of eliminating the passivation of non-aromatic intermediates in degradation of Orange II by Fe3+/H2O2. Journal of Hazardous Materials, 169, 711-718. Chen, K. F., Kao, C. M., Wu, L. C., Surampalli, R. Y., Liang, S. H. (2009). Methyl Tert-Butyl Ether (MTBE) Degradation by Ferrous Ion-Activated Persulfate Oxidation: Feasibility and Kinetics Studies. Water Environment Research, 81(7), 687-694. Chu, W., Wang, Y. R., Leung, H. F. (2011). Synergy of sulfate and hydroxyl radicals in UV/S2O82−/H2O2 oxidation of iodinated X-ray contrast medium iopromide. Chemical Engineering Journal, 178, 154-160. Darley-Usmar, V., Wiseman, H., Halliwell, B. (1995). Nitric oxide and oxygen radicals: a question of balance. FEBS Letters, 369(2-3), 131-135. Daughton C. G. and Ternes T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107(6), 907-938. De Luna, M. D. G., Briones, R. M., Su, C. C., Lu, M. C. (2013). Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor. Chemosphere, 90(4), 1444-1448. De Luna, M. D. G., Veciana, M. L., Su, C. C., Lu, M. C. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. Journal of Hazardous Materials, 217-218, 200-207. De Melo, B. A. G., Motta, F. L., Santana, M. H. A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: C, 62, 967-974. Deng, Y., Ezyske, C. M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Research, 45(18), 6189-6194. Dulova, N., Kattel, E., Trapido, M. (2017). Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: The effect of citric acid addition. Chemical Engineering Journal, 318, 254-263. Esplugas, S., Bila, D., Krause, L. G., Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials, 149, 631–642. Fan, C., Tsui, L., Liao, M. C. (2011). Parathion degradation and its intermediate formation by Fenton process in neutral environment. Chemosphere, 82(2), 229-236. Fan, C., Horng, C. Y., Li, S. J. (2013). Structural characterization of natural organic matter and its impact on methomyl removal efficiency in Fenton process. Chemosphere, 93(1), 178-183. Fan, G., Cang, L., Fang, G., Qin, W., Ge, L., Zhou, D. (2014). Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot. Chemosphere, 117, 410-418. Fang, G. D., Gao, J., Dionysiou, D. D., Liu, C., Zhou, D. M. (2013). Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs. Environmental Science & Technology, 47(9), 4605-4611. Fenton, H. J. H. (1894). Oxidation of Tartaric Acid in Presence of Iron. Journal of Chemical Society, 65, 889-910. Fordham, J. W. L., Williams, H. L. (1951). The persulfate Iron(Ii) initiator system for free radical polymerizations. Journal of the American Chemical Society, 73(10), 4855-4859. Galus, M., Jeyaranjaan, J., Smith, E., Li, H., Metcalfe, C., Wilson, J.Y. (2013). Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquatic Toxicology, 132-133, 212-222. Ganiyu, S. O., Zhou, M., Martinez-Huitle, C. A. (2018). Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Applied Catalysis B: Environmental, 235, 103-129. Gao, Y. Q., Gao, N. Y., Yin, D. Q., Tian, F. X., Zheng, Q. F. (2018). Oxidation of the β-blocker propranolol by UV/persulfate: Effect, mechanism and toxicity investigation. Chemosphere, 201, 50-58. Georgi, A., Schierz, A., Trommler, U., Horwitz, C. P., Collins, T. J., Kopinke, F. –D. (2007). Humic acid modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 72(1-2), 26-36. Ghanbari, F. and Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chemical Engineering Journal, 310, 41-62. Ghauch, A., Baalbaki, A., Amasha, M., Asmar, R. E., Tantawi, O. (2017). Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chemical Engineering Journal, 317, 1012-1025. Glaze, W. H., Kang, J. W., Chapin, D. H. (1987). The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone Science & Engineering, 9, 335-352. Granberg, R. A. and Rasmuson, Å. C. (1999). Solubility of Paracetamol in Pure Solvents. Journal of Chemical and Engineering Data, 44(6), 1391-1395. Gryzenia, J., Cassidy, D., Hampton, D. (2009). Production and accumulation of surfactants during the chemical oxidation of PAH in soil. Chemosphere, 77(4), 540-545. Guo, R., Xie, X., Chen, J. (2015). The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system. Environmental Technology, 36, 844-851. Haber, F., Weiss, J. (1932). Uber die katalyse des hydroperoxydes. Naturwissenschaften, 20, 948-950. Halliwell, B., Gutterridge, J. M. C. (1989). Free Radicals in Biology and Medicine. Clarendon Press, Oxford, 2nd ed., 30. He, X., De la Cruz, A. A., Dionysiou, D. D. (2013). Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. Journal of Photochemistry and Photobiology A: Chemistry, 251, 160-166. Hoehl, K., Schoenberger, G.U., Busch-Stockfisch, M. (2014). Stimulus and recognition thresholds for the basic tastes in deionized water. Are the recommendations for citric acid too high. Ernährungs Umschau, 61(8), 130-136. Holtz, S. (2006). There is no “Away.” Pharmaceuticals, personal care products, and endocrine-disrupting substances: Emerging contaminants detected in water. Canadian Institute for Environmental Law and Policy, Canadian Institute for Environmental Law and Policy Staff. House, D. A. (1962). Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 62(3), 185-203. Hu, Y. L., Lu, Y., Zhou, G. J., Xia, X. H. (2008). A simple electrochemical method for the determination of hydroxyl free radicals without separation process. Talanta, 74(4), 760-765. Huang, C. P., Dong, C., Tang, Z. (1993). Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Management, 13(5-7), 361-377. Huang, K. C., Zhao, Z., Hoag, G. E., Dahmani, A., Block, P. A. (2005). Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere, 61(4), 551-560. Ikeya, K., Sleighter, R. L., Hatcher, P. G., Watanabe, A. (2015). Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry. Geochimica et Cosmochimica Acta, 153, 169-182. Jian, L., Chiang, H. (2001). Influence of carbon disulphide on hydroxyl radicals in the phenanthroline chemiluminescence system. Luminescence, 16(4), 291-293. Kakarla, P. K. C., Watts, R. J. (1997). Depth of Fenton-like oxidation in remediation of surface soil. Journal of Environmental Engineering, 123, 11-17. Kaur, K., Crimi, M. (2014). Release of chromium from soils with persulfate chemical oxidation. Ground Water, 52(5), 748-755. Kolthoff, I. M., Miller, I. K. (1951). The chemistry of persulfate .1. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society, 79, 3055-3059. Koppenol, W. H. (2001). The Haber-Weiss cycle - 70 years later. Redox Report, 6(4), 229-234. Kwon, B. G., Lee, D. S., Kang, N., Yoon, J. (1999). Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Research, 33(9), 2110-2118. Leenheer J. A., Croué J. (2003). Characterizing aquatic dissolved organic matter. Environmental Science & Technology, 37, 18A-26A. Li, J., Luan, Z., Yu, L., Ji, Z. (2011). Pretreatment of acrylic fiber manufacturing wastewater by the Fenton process. Desalination, 284, 62-65. Liang, C., Bruell, C. J., Marley, M. C., Sperry, K. L. (2004a). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere, 55(9), 1213-1223. Liang, C., Bruell, C. J., Marley, M. C., Sperry, K. L. (2004b). Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere, 55(9), 1225-1233. Liang, C., Huang, C. F., Chen, Y. J. (2008). Potential for activated persulfate degradation of BTEX contamination. Water Research, 42(15), 4091-4100. Lin, Z. R., Zhao, L., Dong, Y. H. (2015). Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction. Chemosphere, 141, 7-12. Ling, L., Zhang, D., Fan, C., Shang, C. (2017). A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms. Water Research, 124, 446-453. Liu, C., Song, G., Lin, J. M. (2006). Reactive oxygen species and their chemiluminescence-detection methods. TrAC Trends in Analytical Chemistry, 25(10), 985-995. Liu, C., Wu, B., Chen, X. (2018). Sulfate radical-based oxidation for sludge treatment: A review. Chemical Engineering Journal, 335, 865-875. Liu, J., Gong, X., Song, S., Zhang, F., Lu, C. (2014). Heat-Activated Persulfate Oxidation of Chlorinated Solvents in Sandy Soil. Journal of Spectroscopy, 1-5. Lu, X. Q., Hanna, J. V., Johnson, W. D. (2000). Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS Study. Applied Geochemistry, 15(7), 1019-1033. Luo, C., Ma, J., Jiang, J., Liu, Y., Song, Y., Yang, Y., Guan, Y., Wu, D. (2015). Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5- and UV/S2O82-. Water Research, 80, 99-108. Makino, K., Hagiwara, T., Murakami, A. (1991). A mini review: Fundamental aspects of spin trapping with DMPO. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 37(5-6), 657-665. Maletzky, P., Bauer, R. (1998). The Photo-Fenton method — Degradation of nitrogen containing organic compounds. Chemosphere, 37(5), 899-909. Meng, X., Khoso, S. A., Wu, J., Tian, M., Kang, J., Liu, H., Zhang, Q., Sun, W., Hu, Y. (2019). Efficient COD reduction from sulfide minerals processing wastewater using Fenton process. Minerals Engineering, 132, 110-112. Mirza, M. A., Ahmad, N., Agarwal, S. P., Mahmood, D., Anwer, M. K., Iqbal, Z. (2011). Comparative evaluation of humic substances in oral drug delivery. Results in Pharma Sciences, 1(1), 16-26. Muhammad, I., Tahir, B., Naz, I., Naeem, A., Ruaf, A. K., Aamir, S. (2017). The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. Arabian Journal of Chemistry, 10 (2), S2307-S2318. Newton, G. L., Milligan, J. R. (2006). Fluorescence detection of hydroxyl radicals. Radiation Physics and Chemistry, 75(4), 473-478. Olanow, C. W. (1993). A radical hypothesis for neurodegeneration. Trendsin Neurosciences, 16(11), 439-444. Owen, D. M., Amy, G. L., Chowdhury, Z. K., Paode, R., McCoy, G., Viscosil, K. (1995). NOM characterization and treatability. American Water Works Association, 87(1), 46-63. Özcan, A. A. and Özcan, A. (2018). Investigation of applicability of Electro-Fenton method for the mineralization of naphthol blue black in water. Chemosphere, 202, 618-625. Parsons, S. (2004). Advanced Oxidation Process for Water and Wastewater Treatment. IWA Publishing, UK, P4. Peralta, E., Roa, G., Hernandez-Servin, J. A., Romero, R., Balderas, P., Natividad, R. (2014). Hydroxyl Radicals quantification by UV spectrophotometry. Electrochimica Acta, 129, 137-141. Ratanatamskul, C., Chintitanun, S., Masomboon, N., Lu, M. C. (2010). Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process. Journal of Molecular Catalysis A: Chemical, 331(1-2), 101-105. Rastogi, A., Al-Abed, S.R., Dionysiou, D. D. (2009). Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Research, 43(3), 684-694. Rivas, F. J., Beltran, F. J., Frades, J., Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton's reagent. Water Research, 35(2), 387-396. Roda, A., Mirasoli M., Michelini E., Magliulo M., Simoni P., Guardigli M., Curini R., Sergi M., Marino A. (2006). Analytical approach for monitoring endocrine-disrupting compounds in urban waste water treatment plants. Analytical and Bioanalytical Chemistry, 385(4),742-52. Roshani, B. and Vel Leitner, N. K. (2011). Effect of persulfate on the oxidation of benzotriazole and humic acid by e-beam irradiation. Journal of Hazardous Materials, 190(1-3), 403-408. Safarzadeh, A. A., Bloton, J. R., Cter, S. R. (1996). The use of iron in advanced oxidation process. Journal of Advanced Oxidation Technology, 1(1), 18-26. Stott, D. E. and Martin, J. P. (1990). Synthesis and degradation of natural and synthetic humic material in soils. Humic Substances in Soil and Crop Sciences: Selected Readings, 37-63. Shemer, H., Kunukcu, Y. K., Linden, K. G. (2006). Degradation of the pharmaceutical Metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere, 63, 269-276. Siedlecka, E. M., Więckowska, A., Stepnowski, P. (2007). Influence of inorganic ions on MTBE degradation by Fenton's reagent. Journal of Hazardous Materials, 147(1-2), 497-502. Sim, W. J., Lee, J. W., Lee, E. S., Shin, S. K., Hwang, S. R., Oh, J. E. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82(2), 179-186. Sivagami, K., Sakthivel, K. P., Nambi, I. M. (2018). Advanced oxidation processes for the treatment of tannery wastewater. Journal of Environmental Chemical Engineering, 6(3), 3656-3663. Su, C. C., Bellotindos, L. M., Chng, A. T., Lu, M. C. (2013). Degradation of acetaminophen in an aerated Fenton reactor. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 310-316. Tang, B., Zhang, L., Geng, Y. (2005). Determination of the antioxidant capacity of different food natural products with a new developed flow injection spectrofluorimetry detecting hydroxyl radicals. Talanta, 65(3), 769-775. Tang, C. H., Chang, J. H., Hsieh, Y. H., Hsu, J. C., Ellis, A. V., Liu, W. C., Yan, R. H. (2014). Comparison of hydroxyl radical yields between photo- and electro-catalyzed water treatments. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1649-1654. Tenenbein, M. (2000). Why young children are resistant to acetaminophen poisoning. Journal of Pediatrics, 137(6), 891-892. Tsitonaki, A., Petri, B., Crimi, M., Mosbæk, H., Siegrist, R. L., Bjerg, P. L. (2010). In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology, 40, 55-91. Turgut, C., Pepe, M. K., Cutright, T. J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 131(1), 147-154. Velásquez, M., Santander, I. P., Contreras, D. R., Yáñez, J., Zaror, C., Salazar, R. A., Pérez-Moya, M., Mansilla, H. D. (2014). Oxidative degradation of sulfathiazole by Fenton and photo-Fenton reactions. Journal of Environmental Science and Health, Part A, 49, 661-670. Velichkova, F., Julcour-Lebigue, C., Koumanova, B., Delmas, H. (2013). Heterogeneous Fenton oxidation of paracetamol using iron oxide (nano)particles. Journal of Environmental Chemical Engineering, 1(4), 1214-1222. Wacławek, S., Lutze, H. V., Grübel, K., Padil, V. V. T., Černík, M., Dionysiou, D. D. (2017). Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal, 330, 44-62. Wang, S. and Wang, J. (2018), Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes. Chemosphere, 191, 97-105. Wang, S., Wu. J., Lu, X., Xu, W., Gong, Q., Ding, J., Dan, B., Xie, P. (2019). Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation pathways. Chemical Engineering Journal, 358, 1091-1100. Wu, Y., Zhou, S., Ye, X., Zhou, R., Chen, D. (2011). Oxidation and coagulation removal of humic acid using Fenton process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 379(1-3), 151-156. Xu, X. R., Li, X. Y., Li, X. Z., Li, H. B. (2009). Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes. Separation and Purification Technology, 68(2), 261-266. Yang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E., Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of The Total Environment, 596–597, 303-320. Ye, T., Wei, Z., Spinney, R., Tang, C. J., Luo, S., Xiao, R., Dionysiou, D. D. (2017). Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical. Water Research, 116, 106-115. Yıldız, G., Demiryürek, A. T. (1998). Ferrous iron-induced luminol chemiluminescence: a method for hydroxyl radical study. Journal of Pharmacological and Toxicological Methods, 39(3), 179-184. Zarowitz, B. J. (2012). Analgesic warfare: acetaminophen, really? Geriatric Nursing, 33(1), 51-53. Zavoisky, E. K. (1944). Paramagnetic relaxation of liquid solutions for parallel fields. Journal of Physics, XIII:6, 377-380. Zhang, B. T., Zhang, Y., Teng, Y., Fan, M. (2015). Sulfate radical and its application in decontamination technologies. Critical Reviews in Environmental Science and Technology, 45(16), 1756-1800. Zhao, J., Yang, J., Ma, J. (2014). Mn(II)-enhanced oxidation of benzoic acid by Fe(III)/H2O2 system. Chemical Engineering Journal, 239, 171-177. Zhao, L., Hou, H., Fujii, A., Hosomi, M., Li, F. S. (2014). Degradation of 1, 4-dioxane in water with heat- and Fe2+-activated persulfate oxidation. Environmental Science and Pollution Research, 21(12), 7457-7465. Zhao, L., Ji, Y., Kong, D., Lu, J., Zhou, Q., Yin, X. (2016). Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process. Chemical Engineering Journal, 303, 458-466. Zhu, C., Fang, G., Dionysiou, D. D., Liu, C., Gao, J., Qin, W., Zhou, D. (2016). Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study. Journal of Hazardous Materials, 316, 232-241. 王根樹、蔡詩偉、陳家揚(2010)。飲用水水源與水質中新興污染物對人體健康風險評估之研究計畫(1/4)。行政院環境保護署。 王根樹、蔡詩偉、陳家揚(2012)。飲用水水源與水質中新興污染物對人體健康風險評估之研究計畫(3/4)。行政院環境保護署。 行政院環境保護署環境保護人員訓練所(2008)。有機性廢水處理。廢(污)水處理專責人員訓練教材。 李世堅(2014)。在酸性環境中腐植酸對於Fenton法降解農藥之影響。明志科技大學環境與安全衛生工程系碩士論文。 李孝軍、吳婉怡、李世偉、阮國棟(2013)。從「新興污染物」到「新興去污染物」。環境分析評論,期刊論文,第二期。 李伯璋、張禹斌、林子量、黃信忠、詹健富、龐一鳴、蔡淑鈴(2017)。從健保大數據分析,邁向改革之路。台灣醫界雜誌(60:6期),第8-13頁。 林正芳、林郁真、余宗賢(2008)。新興污染物(抗生素與止痛藥)於特定污染源環境之流佈。持久性有機污染物(含戴奧辛)研討會。 范綱智(2014)。孩童早期暴露於空氣汙染與乙醯胺酚類藥物使用與氣喘之影響:以台北人口為主的世代研究。中國醫藥大學公共衛生學系碩士論文。 食品藥物管理署(2014)。止痛藥品(acetaminophen,乙醯胺酚成分)之用藥安全資訊說明。103年衛生福利部新聞,2月新聞。 高思懷、林奮宏、張芳淑(1995)。Fenton反應中無機鹽之影響。第二十屆廢水處理技術研討會論文集,第122-126頁。 張靜宜(2011)。家庭廢棄藥品處置與環境風險認知之研究—以台灣南部民眾為例。國立屏東科技大學環境工程與科學系碩士論文。 陳立夫與楊秋忠(1993)。土壤精華-腐植質。科學月刊,第24卷,第1期,53-58。 陳嘉惠、陳櫻丹、林亭儀、李俊璋(2009)。新興環境污染物綜論。環境健康風險季刊,行政院衛生署國民健康局,第二季。 曾元璟(2003)。 Fenton程序處理水中有機物之研究。 國立臺灣大學環境衛生研究所碩士論文。 蔡宏志(2005)。Photo-Fenton法處理反應性偶氮染料BlackB與酚之研究。國立成功大學化學工程學系碩博士班碩士論文。 鄭佳倩(2007)。以自由基捕捉/螢光法量測光催化反應中氫氧自由基之生成。國立高雄第一科技大學環境與安全衛生工程學系碩士論文。 顏幸苑(1993)。過氧化氫改善化學混凝減低三鹵甲烷生成之研究。淡江大學水資源及環境工程所碩士論文。 顧洋(1994)。高級氧化程序在廢水處理上的應用。工業污染防治技術手冊 Vol. 39,經濟部工業局編印。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71389 | - |
| dc.description.abstract | 隨著化學分析技術之進步,目前可以檢測到過去所無法檢測的低濃度污染物稱為新興污染物(ECs),其對人類健康和生態都具有潛在的風險。乙醯胺酚(ACT)為一種解熱、鎮痛和抗炎藥物,被歸類為新興污染物中的藥物和個人護理產品(PPCPs)之一。乙醯胺酚是一種非常受歡迎的非處方用藥,其經過不當處理和處置進而進入自然水體中,對環境與健康造成危害。
本研究的目的在探討Fenton反應降解乙醯胺酚去除率與礦化率之機制,並研究Fe2+活化過硫酸鹽(PDS)在一樣操作條件下之結果,另外也研究了天然有機物質(包括腐殖酸和檸檬酸鹽)存在時對去除效率之影響。實驗過程中透過測量乙醯胺酚濃度、pH值、ORP電位和TOC濃度等實驗參數,瞭解兩種氧化反應之機制。 由於反應過程中添加之氧化劑濃度低,在Fenton反應和Fe2+活化過硫酸鹽降解乙醯胺酚實驗中皆發現pH值沒有顯著的改變。Fenton反應的第一分鐘內,ORP電位顯著地增加。由於目標污染物消耗了氫氧自由基,在兩分鐘後呈現逐漸下降之趨勢。而在Fe2+活化過硫酸鹽的實驗中,不同於Fenton反應,由於硫酸根自由基是經由電子移轉對有機污染物進行降解,ORP電位在前2分鐘內明顯增加,5分鐘後呈略微增加趨勢,並維持在高氧化還原電位。 在本研究中發現,當Fenton反應操作條件為FeSO4:H2O2 = 0.5mM:0.5mM進行試驗時,可以得到最佳之去除率約88%。經由測定時間段剩餘之氫氧自由基濃度,驗證氫氧自由基濃度會隨著過氧化氫濃度增加而上升,而去除率也是隨過氧化氫濃度增加而提高。且在反應5分鐘後,氫氧自由基消耗殆盡,此與去除率變化一致,當反應於5分鐘後去除率不再有提升。 在最佳操作條件下(FeSO4:H2O2 = 0.5mM:0.5mM),去除率約為88%,但礦化率僅僅只有約9%。在反應初始階段上升,並在反應5分鐘後,趨於緩慢且未再有任何礦化發生,但礦化率並未等於去除率。 而Fe2+活化過硫酸鹽之降解過程中,其中Fe2+與過硫酸鈉的比例保持與Fenton反應試劑相同(即0.5mM:0.5mM),可觀察到其去除率僅約39%,礦化率僅僅只有約2%。造成此結果的主要原因是,硫酸根自由基與乙醯胺酚或亞鐵離子的反應速率常數相接近。因此硫酸根自由基除了與乙醯胺酚反應外,也會同時與亞鐵離子反應,導致其去除率較Fenton反應來的低。另外由於硫酸根自由基與乙醯胺酚的中間產物的反應速率常數低於系統中其他物種與自由基的反應速率常數,導致礦化率僅只有約2%。 當溶液中存在天然有機物質(腐殖酸與檸檬酸鹽)時,對Fenton反應和Fe2+活化過硫酸鹽反應降解乙醯胺酚之去除率與礦化率並未有顯著的改變。腐植酸在Fenton反應中其生成與消耗之氫氧自由基的量相同,因此對於乙醯胺酚之去除率未有顯著的影響。檸檬酸鹽對於Fenton反應降解乙醯胺酚去除率之影響並不顯著。此外利用天然水體作為背景,進行Fenton反應降解乙醯胺酚,經降解30分鐘後所得之去除率與在純水中進行實驗相似。 | zh_TW |
| dc.description.abstract | With the advancement of chemical analytical technology, many emerging contaminants (ECs) which exhibit potential risks both to human health and ecology have been detected at different levels of concentration. Acetaminophen (ACT), an antipyretic, analgesic and anti-inflammatory drug, is classified as one of the pharmaceutical and personal care products (PPCPs) of ECs. The ACT is also an over-the-counter medicine with a high degree of popularity. Inappropriate treatment and disposal of such medicine cause its entrance to the water body impacting the environment and public health.
The purpose of this study is to investigate the Fenton and Fe2+ activated peroxydisulfate (PDS) processes in the degradation of aqueous acetaminophen. Additionally, the removal efficiency at the presence of natural organic matter (NOM) including humic acid and citrate was explored. The experimental parameters of ACT concentrations, pH, ORP and TOC were measured. Since the concentration of the oxidant added during the reaction was low, the pH value with no significant variation in both of the Fenton reaction and the Fe2+ activated PDS degradation of the acetaminophen. The ORP increased significantly during the first minute of the Fenton process and exhibited a gradually-decreasing trend after two minutes due to •OH consumption. Different from the Fenton process, the ORP of Fe2+ activated PDS increased obviously during the first two minutes and displayed a slightly-increasing trend after five minutes since SO4•- reacts with organic compounds primarily through electron transfer. In the present study, when Fenton degradation was carried out with 0.5 mM ferrous sulfate and 0.5 mM hydrogen peroxide, the most effective removal rate was observed at about 88 %. By measuring the remaining concentration of hydroxyl radicals in each period, the remaining concentration of hydroxyl radicals increases as the concentration of hydrogen peroxide increases, this was the same as the removal efficiency of ACT. After 5 minutes of reaction, the hydroxyl radicals were consumed all, which was consistent with the variation in removal efficiency. Under the optimal operating conditions, the removal efficiency was about 88%, but the mineralization of ACT was only about 9%. The variation trend of mineralization of ACT is similar to the removal efficiency, which rising in the initial stage of the reaction, and after 5 minutes, it tended to be slow and no further mineralization occurs, but the mineralization efficiency is not equal to the removal efficiency. For the Fe2+ activated PDS degradation process in which, the ratio of persulfate to ferrous sulfate was maintained the same (i.e., 0.5mM to 0.5mM), the removal efficiency and the mineralization of ACT was only about 39% and 2%, respectively. The main reason for this result is that the reaction rate constant of sulfate radicals between ACT and Fe2+ is similar, therefore the sulfate radicals reacted with ACT and Fe2+, which resulted in a lower removal rate. Furthermore, since the reaction rate constant of the intermediate product of ACT reacts with sulfate radicals is lower than the reaction rate constant of other species and free radicals in the system, the mineralization rate is only about 2%. At the presence of natural organic matters (humic acid and citrate), there was no significant change in the removal efficiency and mineralization of the degradation of ACT by the Fenton and the Fe2+ activated PDS processes. The increase in •OH generation was equal with the •OH consumption by the humic acid presence, resulting in the observed no significant effect on ACT removal in the present study. The effect of citrate in the removal efficiency of the degradation of ACT by the Fenton process is not significant. In addition, the degradation of ACT by the Fenton process using natural water as a background, the removal efficiency of ACT was similar to that in pure water. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:54Z (GMT). No. of bitstreams: 1 ntu-108-R05622041-1.pdf: 4306839 bytes, checksum: d8a0565c5b148cee4d0609fac543c103 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口委審定書 I
謝誌 II 摘要 III Abstract V 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1新興污染物 4 2.1.1藥物與個人保健用品 5 2.2 乙醯胺酚 8 2.2.1乙醯胺酚之風險危害 8 2.2.2 乙醯胺酚之分解 9 2.3 水中天然有機物 11 2.3.1 腐植質 12 2.3.2 非腐植質 14 2.4 高級氧化程序 15 2.5 氫氧自由基 17 2.5.1氫氧自由基之量測方法 18 2.6 Fenton Process 21 2.6.1 Fenton反應機制 22 2.6.2 Fenton反應之影響因子 25 2.7 過硫酸鹽 28 2.7.1 活化過硫酸鹽 28 2.7.2 硫酸根自由基 31 2.7.3 Fe2+活化PDS之反應機制 32 第三章 研究內容與實驗方法 34 3.1 研究內容 34 3.2實驗試劑之製備 36 3.3 分析方法 37 3.3.1 乙醯胺酚濃度分析 37 3.3.2 總有機碳濃度分析 37 3.3.3 pH值與ORP電位之測定 39 3.3.4氫氧自由基捕捉劑之選定與分析 39 3.4實驗步驟 40 3.4.1 Fenton 與Fe2+活化PDS試驗 40 3.4.2 各時段剩餘之氫氧自由基量測試驗 41 3.4.3 天然有機物質混合液之Fenton 與Fe2+活化PDS試驗 41 第四章 結果與討論 42 4.1 Fenton process對乙醯胺酚去除率之影響 42 4.1.1 實驗試劑對乙醯胺酚之影響 42 4.1.2 H2O2劑量的影響 43 4.1.3 乙醯胺酚之礦化率 46 4.1.4 Fe2+劑量的影響 48 4.1.5 ORP與pH值之變化 51 4.2 Fenton process降解反應期間氫氧自由基之變化 53 4.2.1 Fenton process對於乙醯胺酚去除率與礦化率差異 55 4.3 Fe2+活化PDS 59 4.3.1 兩種反應對於乙醯胺酚去除率之比較 59 4.3.2 ORP和pH值之變化 62 4.3.3 兩種反應之降解途徑 63 4.4 天然有機物之混合液進行Fenton與Fe2+活化PDS試驗 65 4.4.1 腐植酸對Fenton process降解乙醯胺酚之影響 65 4.4.2 腐植酸對Fe2+活化PDS降解乙醯胺酚之影響 67 4.4.3 腐植酸對Fenton與Fe2+活化PDS降解乙醯胺酚之TOC變化 69 4.4.4 檸檬酸鹽Fenton與Fe2+活化PDS降解乙醯胺酚之影響 71 第五章 結論與建議 74 參考文獻 76 附錄1 Fenton與Fe2+活化PDS降解乙醯胺酚之數據分析 88 附錄2 Fenton與Fe2+活化PDS降解乙醯胺酚與天然有機物混合液之數據分析 107 附錄3口試委員意見回覆單 132 | |
| dc.language.iso | zh-TW | |
| dc.subject | 乙醯胺酚 | zh_TW |
| dc.subject | 芬頓法 | zh_TW |
| dc.subject | Fe2+活化過硫酸鹽 | zh_TW |
| dc.subject | 去除率 | zh_TW |
| dc.subject | 礦化率 | zh_TW |
| dc.subject | 腐植酸 | zh_TW |
| dc.subject | 檸檬酸鹽 | zh_TW |
| dc.subject | Acetaminophen | en |
| dc.subject | Citrate | en |
| dc.subject | Humic acid | en |
| dc.subject | Mineralization | en |
| dc.subject | Degradation | en |
| dc.subject | Fe2+ activated peroxydisulfate | en |
| dc.subject | Fenton process | en |
| dc.title | 以芬頓反應降解乙醯胺酚之去除率與礦化率之機制研究 | zh_TW |
| dc.title | The Mechanism of Degradation and Mineralization of Acetaminophen by Fenton Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 侯文哲(Wen-Che Hou),林逸彬(Yi-Pin Lin),魏嘉徵(Chia-Cheng Wei) | |
| dc.subject.keyword | 乙醯胺酚,芬頓法,Fe2+活化過硫酸鹽,去除率,礦化率,腐植酸,檸檬酸鹽, | zh_TW |
| dc.subject.keyword | Acetaminophen,Fenton process,Fe2+ activated peroxydisulfate,Degradation,Mineralization,Humic acid,Citrate, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU201900385 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-02-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
