請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71373
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 范致豪(Chihhao Fan) | |
dc.contributor.author | Ying-Chun Liu | en |
dc.contributor.author | 劉映君 | zh_TW |
dc.date.accessioned | 2021-06-17T05:59:40Z | - |
dc.date.available | 2024-02-19 | |
dc.date.copyright | 2019-02-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-02-13 | |
dc.identifier.citation | Abbassian, K., Kargari, A., Khaghazchi, T., and Hosseinzadeh, N. (2011). Liquid-liquid extraction of phenol from aqueous solution, The Seventh International Chemical Engineering Congress and Exhibition, Kish Island, Iran, November 21-24.
Alnaizy, R. and Akgerman, A. (2000). Advanced oxidation of phenolic compounds, Advances in Environmental Research 4, 233-244. ASTM Philadelphia (1995). American Society for Testing and Materials. Standard Test Method for Phenolic Compounds in Water. Annual Book of ASTM Standard 11, 56-62. Babuponnusami, A. and Muthukumar, K. (2012). Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chemical Engineering Journal 183, 1-9. Babuponnusami, A. and Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemistry Engineering 2, 557-572. Bach, A., Shemer, H., and Semiat, R. (2010). Kinetics of phenol mineralization by Fenton-like oxidation, Desalination 264, 188-192. Burbano, A. A., Dionysiou, D. D., Suidana, M. T., and Richardson, T. L. (2005). Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent, Water Research 39, 107-118. Caram, B., García-Ballesteros, S., Santos-Juanes, L., Arques, A., and García-Einschlag, F. S. (2018). Humic like substances for the treatment of scarcely soluble pollutants by mild photo-Fenton process, Chemosphere 198, 139-146. Chan, K. H. and Chu, W. (2005). Model applications and mechanism study on the degradation of atrazine by Fenton’s system, Journal of Hazardous Materials B118, 227-237. Chen, P. H. and Tsai, D. D. W. (2005). A Study of Predictive Abilities for Different Models, Journal of Soil and Water Conservation 37, 127-138 (in Chinese). Chen, R. and Pignatello, J. J. (1997). Role of Quinone Intermediates as Electron Shuttles in Fenton and Photo-assisted Fenton Oxidations of Aromatic Compounds, Environmental Science and Technology 31, 2399-2406. Cheng, Z., Yang, B., Chen, Q., Shen, Z., and Yuan, T. (2018). Quantitative relationships between molecular parameters and reaction rate of organic chemicals in Fenton process in temperature range of 15.8 °C - 60 °C, Chemical Engineering Journal 350, 534-540. Dubber, D. and Gray, N. F. (2010). Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste, Journal of Environmental Science and Health Part A 45, 1595-1600. Elovitz, M. S. and Gunten, U. V. (1999). Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept, Ozone: Science and Engineering: The Journal of the International Ozone Association 21, 239-260. Emerson, E. (1943). The condensation of aminoantipyrine. II. A new color test for phenolic compounds, The Journal of Organic Chemistry 8, 417-428. Environmental Analysis Laboratory (EPA), Executive Yuan, R.O.C (2005). 環署檢字第0940060138號公告(NIEA W521.52A): 水中總酚檢測方法-分光光度計法:http://www.hi-point.com.tw/docs/products/2009930012636_62305.pdf. Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation, Water Research 36, 1034-1042. Fan, C., Tsui, L., and Liao, M. (2011). Parathion degradation and its intermediate formation by Fenton process in neutral environment. Chemosphere 82, 229-236. Fan, C., Horng, C., and Li, S. (2013). Structural characterization of natural organic matter and its impact on methomyl removal efficiency in Fenton process, Chemosphere 93, 178-183. Ferri, F., Bertin, L., Scoma, A., Marchetti, L., and Fava, F. (2011). Recovery of low molecular weight phenols through solid-phase extraction, Chemical Engineering Journal 166, 994-1001. Georgi, A., Schierz, A., Trommler, U., Horwitz, C. P., ColJianns T.J., and Kopinke, F.D. (2007). Humic acid modified Fenton reagent for enhancement of the working pH range, Applied Catalysis B: Environmental 72, 26-36. Giannakis, S., Liu, S., Carratalà, A., Rtimi, S., Bensimon, M., Pulgarina, C. (2017). Effect of Fe(II)/Fe(III) species, pH, irradiance and bacterial presence on viral inactivation in wastewater by the photo-Fenton process: Kinetic modeling and mechanistic interpretation, Applied Catalysis B: Environmental 204, 156-166. Gomis, J., Gonçalves, M. G., Vercher, R. F., Sabater, C., Castillo, M. A., Prevot, A. B., Amat, A. M., and Arques, A. (2015). Determination of photostability, biocompatibility and efficiency as photo-Fenton auxiliaries of three different types of soluble bio-based substances (SBO), Catalysis Today 252, 177-183. Gu, L., Zhu, N., Wang, L., Bing, X., and Chen, X. (2011). Combined humic acid adsorption and enhanced Fenton processes for the treatment of naphthalene dye intermediate wastewater, Journal of Hazardous Materials 198, 232- 240. Guedesl, A. M. F. M., Madeira, L. M. P., Boaventura, R. A. R., and Costa, C. A. V. (2003). Fenton oxidation of cork cooking wastewater—overall kinetic analysis, Water Research 37, 3061-3069. He, D., Guan, X., Ma, J., Yang, X., Cui, C. (2010). Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate, Journal of Hazardous Materials 182, 681-688. Hidalgo, M. C., Maicu, M., Navı´o, J. A., and Colo´n, G. (2007). Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition, Catalysis Today 129, 43-49. Hsiao-Ting Su (2009). Dissertation Study on the treatment of high concentration laboratory organic wastewater and phenol by advanced oxidation processes, Master thesis, National Cheng Kung University, Department of Chemistry Engineering, Taiwan (in Chinese). Huang, D. L., Hu, C. J., Zeng, G. M., Cheng, M., Xu, P., Gong, X. M., Wang R. Z., and Xue, W. J. (2017). Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation, Science of Total Environment 574, 1599-1610. Hung-Chih Tsai (2005). Study on the treatment of azo dye Reactive Black B and phenol by Photo-Fenton method, Master thesis, National Cheng Kung University, Department of Chemical Engineering, Taiwan (in Chinese). Inchaurrondo, N., Ramos, C. P., Zerjav, G., Font, J., Pintar, A., and Haure, P. (2017). Modified diatomites for Fenton-like oxidation of phenol, Microporous and Mesoporous Materials 239, 396-408. Ingole, R. S., Lataye, D. H., and Dhorabe, P. T. (2015). Adsorption of Phenol onto Banana Peels Activated Carbon, KSCE Journal of Civil Engineering 21, 100-110. International Humic Substances Society (IHSS): Natural Organic Matter ResearchNatural organic matter research (2007). What are humic substances: http://humic-substances.org/what-are-humic-substances-2/ (data from 11/2018). Jalayeri, H., Ardejani, F. D., Marandi, R., and Rafiee pur, S. (2013). Biodegradation of phenol from a synthetic aqueous system using acclimatized activated sludge , Arabian Journal of Geosciences 6, 3847-3852. Jiang, C., Pang, S., Ouyan, F., Ma, J., and Jiang, J. (2010). A new insight into Fenton and Fenton-like processes for water treatment, Journal of Hazardous Materials 174, 813-817. Kang, N., Lee, D. S., and Yoon, J. (2002). Kinetic modeling of Fenton oxidation of phenol and monochlorophenols, Chemosphere 47, 915-924. Kang, Y. W. and Hwang, K. Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process, Water Research 34, 2786-2790. Kim, S. K. and Ihm, S. K. (2005). Nature of carbonaceous deposits on the alumina supported transition metal oxide catalysts in the wet air oxidation of phenol, Topics in Catalysis 33, 171-179. Koesnarpadi, S., Santosa, S. J., Siswanta, D., and Rusdiarso, B. (2017). Humic acid coated Fe3O4 nanoparticle for phenol sorption, Indonesia Journal of Chemistry 17, 274-283. Kurnik, K., Treder, K., Skorupa-Kłaput, M., Tretyn, A., and Tyburski, J. (2015). Removal of Phenol from Synthetic and Industrial Wastewater by Potato Pulp Peroxidases, Water, Air, Soil Pollution 226, 254. Lavitha, V. and Palanivelu, L. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere 55, 1235-1243. Lee, C. and Yoon, J. (2004). Temperature dependence of hydroxyl radical formation in the hv/Fe3+/H2O2 and Fe3+/H2O2 systems, Chemosphere 56, 923-934. Lee, Y., Lee, C., and Yoon, J. (2003). High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H2O2 system, Chemosphere 51, 963-971. Lin, S. H. and Lo, C. C. (1997). Fenton process for treatment of desizing wastewater, Water Research 31, 2050-2056. Lindsey, M. E. and Tarr, M. A. (2000). Inhibited hydroxyl radical degradation of aromatic hydrocarbons in the presence of dissolved fulvic acid, Water Research 34, 2385-2389. Ling, R., Yu, L., Phama, T. P. T., Shao, J., Chen, J. P., and Reinhard, M. (2017). The tolerance of a thin-film composite polyamide reverse osmosis membrane to hydrogen peroxide exposure, Journal of Membrane Science 524, 529-2536. Lipczynska-Kochany, E. and Kochany, J. (2008). Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH, Chemosphere 73, 745-750. Lucas, M. S. and Peres, J. A. (2009). Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study, Journal of Hazardous Materials 168, 1253-1259. MacCarthy. P. (Ghabbour, E. A. and Davies, G.) (2002). Humic Substances: Structures, Models and Functions, The principles of humic substances: an introduction to the first principle, Great Britain: Royal Society of Chemistry. Masomboon, N., Ratanatamskul, C., Lu, M. C. (2011). Kinetics of 2,6-dimethylaniline oxidation by various Fenton processes, Journal of Hazardous Materials 192, 347-353. Matilainen, A., Lindqvist, N., Korhonen, S., and Tuhkanen, T. (2004). Removal of NOM in the different stages of the water treatment process, Chemosphere 54, 1017-1023. Mohannadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., and Mofarrah, E. (2014). Phenol removal from industrial wastewaters: a short review, Desalination and Water Treatment Volume 53, 2215-2234. Nam, S. N., Han, S. K., Kang, J. W., and Choi, H. C. (2003). Kinetics and mechanisms of the sonolytic destruction of non-volatile organic compounds: investigation of the sonochemical reaction zone using several ·OH monitoring techniques, Ultrasonics Sonochemistry 10, 139-147. Ndegwa, P. M., Wang, L., and Vaddella, V. K. (2007). Potential strategies for process control and monitoring of stabilization of dairy wastewaters in batch aerobic treatment systems, Process Biochemistry 42, 1272-1278. Ohlenbusch, G., Kumke, M. U., and Frimmel, F. H. (2000). Sorption of phenols to dissolved organic matter investigated by solid phase microextraction, The Science of the Total Environment 253, 63-74. Olmez-Hanci, T. and Arslan-Alaton, I. (2013). Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol, Chemical Engineering Journal 224, 10-16. Pariente, M. I., Molina, R., Melero, J. A., Botas, J. A., and Martínez, F. (2015). Intensified-Fenton process for the treatment of phenol aqueous solutions, Water Science and Technology 71, 359-65. Poerschmann, J. and Trommler, U. (2009). Pathways of advanced oxidation of phenol by Fenton’s reagent—Identification of oxidative coupling intermediates by extractive acetylation, Journal of Chromatography A 1216, 5570-5579. Pontes, R. F. F., Moraes, J. E. F., Machulek Jr., A., Pinto, J. M. (2010). A mechanistic kinetic model for phenol degradation by the Fenton process, Journal of Hazardous Materials 176, 402-413. Rafiei, B., Naeimpoor, F., and Mohammadi, T. (2014). Bio-film and bio-entrapped hybrid membrane bioreactors in wastewater treatment: Comparison of membrane fouling and removal efficiency, Desalination 337, 16-22. Remya, N. and Lin, J. G. (2011). Current status of microwave application in wastewater treatment—a review, Chemical Engineering Journal 166, 797-813. Saito, T., Koopal, L. K., Riemsdijk, W. H. V., Nagasaki, S. and Tanaka, S. (2004). Adsorption of Humic acid on Goethite: Isotherms, charge adjustments and potential profiles, Langmuir 20, 689-700. Scott, D.T., McKnight, D.M., Blunt-Harris, E.L., Kolesar, S.E., and Lovley, D.R. (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms, Environmental Science and Technology 32, 2984-2989. Shih-Jian Li (2014). Dissertation The Effect of Humic acid on the degradation of organic pesticides by Fenton reaction in acidic environment, Master thesis, Ming Chi University of Technology, Department of Safety, Health and Environmental Engineering, Taiwan. Struyk, Z. and Sposito, G. (2001). Redox properties of standard humic acids, Geoderma 102, 329-346. Varadaraju, C., Tamilselvan, G., Enoch, I., and Selvakumar P. M. (2018). Phenol Sensing Studies by 4-Aminoantipyrine Method-A Review, Organic and Medicinal Chemistry International Journal 5, 1-7. Villegas, L.G.C., Mashhadi, N., Chen, M., Mukherjee, D., and Taylor, K. E. (2016). A Short Review of Techniques for Phenol Removal from Wastewater, Current Pollution Report 2, 157-167. Vione, D., Merlo, F., Maurino, V., and Minero, C. (2004). Effect of humic acids on the Fenton degradation of phenol, Environmental Chemistry Letters 2, 129-133. Visvanathan, C. and Ben Aim, R. (2015). Membrane Bioreactor Applications in Wastewater Treatment. 11/2015 released from research gate on: https://www.researchgate.net/publication/237597440_Membrane_Bioreactor_Applications_in_Wastewater_Treatment Wu, Y., Zhou, S., Qin, F., Zheng, K., and Ye, X. (2010). Modeling the oxidation kinetics of Fenton’s process on the degradation of humic acid, Journal of Hazardous Materials 179, 533-539. Wu, Y., Zhou, S., Ye, X., Zhao, R., and Chen, D. (2011). Oxidation and coagulation removal of humic acid using Fenton process, Colloids and Surfaces A: Physicochemical and Engineering Aspects 379, 151-156. Xia, D., Shen, Z., Huang, G., Wang, W., Yu, J. C., and Wong, P. K. (2015). Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for 'Green” Bacterial Inactivation under Visible Light, Environmental Science Technology 49, 6264-6273. Yamashita, Y. and Saito, T. (2015). Effects of weak organic acids on the size distribution and size-dependent metal binding of humic substances as studied by flow field-flow fractionation, Journal of Environmental Chemical Engineering 3, 3024-3029. Zazo, J. A., Casas, J. A., Mohedano, A. F., Gilarranz M. A., and Rodriguez, J. J. (2005). Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent, Environmental Science and Technology 39, 9295-9302. Zazo, J. A., Casas, J. A., Molina, C. B., Quintanilla, A. and Rodriguez, J. J. (2007). Evolution of Ecotoxicity upon Fenton's Oxidation of Phenol in Water, Environmental Science and Technology 41, 7164-7170. Zazo, J. A., Pliego, G., Blasco, S., Casas, J. A., and Rodriguez, J. J. (2011). Intensification of the Fenton Process by Increasing the Temperature, Industrial and Engineering Chemistry Research 50, 866-870. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71373 | - |
dc.description.abstract | 在現代工業日益發展之下,工業產出之污染物處理成為亟需重視的一項議題。苯酚雖然具有腐蝕性以及生殖毒性,卻是被廣泛使用之工業原料的芳香族有機化合物之一,並且除了苯酚本身之毒性以外,它的不完全降解所產生的中間產物如鄰苯二酚、對苯二酚,皆會對環境造成更甚的毒性污染。因此,苯酚的完全降解以及礦化,在處理排放污水之中則變得極為重要。芬頓反應(Fenton process)乃是一項屬於高級氧化處理(Advanced oxidation process,AOP)的污水處理技術,因其應用之簡單性以及低成本之特色被多方研究。然而在實際應用芬頓反應處理水污染時,應考慮水環境中存在之腐植酸(huimic acid, HA),又,台灣本身之水體條件受到四季溫度之變化和工廠排水之影響而可能有不定的水體溫度。因此綜述以上,有關溫度和腐植酸存在對於芬頓水處理之影響仍為需要加以討論之議題。
本研究之目標是能夠得知在模擬台灣水體之溫度變化影響以及腐植酸存在下,芬頓水處理運用在低濃度苯酚之降解以及礦化之效益為何。本實驗將芬頓反應在不同的溫度條件和腐植酸濃度下進行,除了剩餘苯酚濃度以外,也進行了總酚濃度、總有機碳分析(TOC)、氧化還原電位(ORP)、氫氧自由基(‧OH)濃度和化學需氧量(COD)等因子的測量以監測或比較各個條件下的降解效率。 以實驗結果而言,本研究發現溫度的強化效應或腐植酸的存在對於低濃度苯酚在芬頓反應(芬頓試劑Fe2+/H2O2=0.1mM:0.5mM,亞化學劑量)中之降解並無太明顯的差異影響,但對於苯酚整體礦化之影響卻較為顯著。由於高溫條件下(>50℃)芬頓反應的不穩定性和腐植酸可能造成的抑制效應,腐植酸對於苯酚礦化率之強化在較低的室溫(20℃)時可將礦化率提升至40.3%,優於其他較高溫的條件之下所得到小於30%之礦化結果。反應速率常數k在芬頓60℃、有腐植酸的條件下是9.73×10^-4 M^-1min^-1並低於在沒有腐植酸情況的5.41×10^-3 M^-1min^-1,反之,在20℃有腐植酸的條件下k是2.11×10^-3 M^-1min^-1並大於沒有腐植酸的1.60×10^-3 M^-1min^-1。由於腐植酸的存在會提供電子促使亞鐵離子的再生、與腐植酸錯合或是對污染物進行吸附反應,以致芬頓反應內部機制變得更加複雜,並且高溫作用下這些反應會更加加劇,因此高溫條件下的苯酚降解即受到影響而降低降解效率。由本實驗所得到之結果,認為當處理真實低濃度苯酚污水時,有效益之芬頓處理應運用於低室溫20℃而非其他較高溫之條件。 | zh_TW |
dc.description.abstract | Degradation of pollutants in the environment has become an issue through the development of industry nowadays. Phenol, a widely used aromatic organic compound, is a hazardous substance due to its corrosiveness and reproductive toxicity. The incomplete degradation of phenol results in the formation of toxic phenolic intermediates such as catechol and hydroquinone. For the reason, the degradation and mineralization of phenol containing phenolic compounds is a critical concern when disposal with sewage discharge. Fenton process is one of the mostly-used AOP (advanced oxidation processes) when it comes to wastewater treatment due to its simplicity and low cost. However, the effects of the existence of humic acid (HA) in the treatment should be considered when wastewater treatment is conducted in real aquatic water environment. Furthermore, seasons in Taiwan causes the variation in temperature of the water body, which ranges from 20℃ to 30℃, and even reaches a higher level if containing the discharge of industrial wastewater. Therefore, discussion of temperature impact and HA coexistent on wastewater treatment of phenol by Fenton process should be an essential issue.
The objective of this study is to obtain the degradation and mineralization efficiency in Fenton wastewater treatment of low concentration phenol. This study applies Fenton process to the degradation of phenol and its phenolic intermediates at different conditions of temperature and humic acid concentrations. Beside the residual phenol and phenolic compounds concentration, TOC, ORP, hydroxyl radicals and COD were measured to compare the degradation efficiency under different experimental conditions. In regard with the results, the impact caused by temperature variation or humic acid coexistence on low concentration phenol with sub-stoichiometric Fenton reagent (Fe2+: H2O2=0.1 mM: 0.5 mM) is not as apparent, but more TOC mineralization was observed. The enhancement of the mineralization rate by the coexistence of humic acid could reach 40.3% removal at room temperature of 20℃ rather than at higher temperature as the rate <30% due to the hinder effect produced by the humic acid and instability of the processes over 50℃. The constant value k of TOC mineralization at 60℃ with humic acid is 9.73×10^-4 M^-1min^-1 and is slower than that without humic acid as 5.41×10^-3 M^-1min^-1. The k of 20℃ with humic acid process is 2.11×10^-3 M^-1min^-1 and is 1.60×10^-3 M^-1min^-1 in the process without humic acid. The presence of humic acid in Fenton process resulted in more complicated mechanisms such as providing electrons, competing for oxidants and sorption. Therefore, the hinder effect on the mineralization of phenol by Fenton process at higher temperature is enhanced. According to the results in this study, an effective Fenton treatment with sub-stoichiometric Fenton reagent for low concentration phenol degradation should be applied at ambient temperature as 20℃ rather than higher temperature in the real water body. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:40Z (GMT). No. of bitstreams: 1 ntu-108-R05622031-1.pdf: 3571028 bytes, checksum: 6fec361b815afd149157c4463dd57216 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Acknowledgment i
Abstract ii 摘要 iv Table of Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1 1-1 Background 1 1-2 The goal of this study 3 Chapter 2 Literature review 4 2-1 Principle and mechanism of Fenton process 4 2-1-1 Fenton process 4 2-1-2 Temperature in Fenton process 7 2-1-3 pH in Fenton process 9 2-1-4 [Fe2+]/[H2O2] concentration in Fenton process 10 2-2 Phenol 11 2-2-1 Properties of phenol 11 2-2-1 Degradation of phenol in Fenton process 13 2-2-2 Phenol in wastewater treatment 15 2-3 Humic acid 22 2-3-1 Characteristic and application of humic acid 22 2-3-1 Humic acid in Fenton process 24 Chapter 3 Materials and method 29 3-1 Chemicals 29 3-2 Instruments and apparatus 31 3-3 Experiment procedure 32 3-3-1 Experiment flowchart 32 3-3-2 Preparation of standard reagent 34 3-4 Analytic methods 35 3-4-1 Concentration of phenol and phenolic intermediates 35 3-4-2 TOC analysis 37 3-4-3 COD analysis 38 3-4-4 ORP/pH/temperature measurement 38 3-4-5 Concentration of hydroxyl radical 39 3-4-6 Kinetics calculation 40 Chapter 4 Results and discussion 42 4-1 Degradation by classical Fenton process at different temperature 42 4-1-1 Degradation of phenols 42 4-1-2 Conversion of TOC and COD 47 4-1-3 ORP values and hydroxyl radicals 51 4-2 Degradation by Fenton process with humic acid coexistence 54 4-2-1 Phenols degradation by Fenton with different HA concentration coexistence 54 4-2-2 Phenols degradation by HA coexistence Fenton at different temperature 57 4-3 Degradation and mineralization kinetics of phenols 65 4-3-1 Phenols degradation kinetics in classical Fenton processes 65 4-3-1 Phenols degradation kinetics in Fenton process with HA coexistence 69 4-3-2 Phenols mineralization kinetics 71 Chapter 5 Conclusions 73 References 75 Attachments 82 | |
dc.language.iso | zh-TW | |
dc.title | 以芬頓反應探討苯酚之降解與礦化-溫度變化以及腐植酸共存之影響 | zh_TW |
dc.title | Degradation and Mineralization of Phenol by Fenton Process: Impacts of Temperature Variation and Humic Acid Coexistence | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 山下祐司(Yamashita Yuji) | |
dc.contributor.oralexamcommittee | 林裕彬,足立泰久(Yasuhisa Adachi) | |
dc.subject.keyword | 芬頓反應,溫度效應,腐植酸,苯酚,礦化, | zh_TW |
dc.subject.keyword | Fenton process,temperature,phenol,humic acid,mineralization, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201900462 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-02-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。