Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖(Nien-Tsu Huang)
dc.contributor.authorSheng-Han Chuen
dc.contributor.author朱聖瀚zh_TW
dc.date.accessioned2021-06-17T05:59:33Z-
dc.date.available2019-03-08
dc.date.copyright2019-03-08
dc.date.issued2018
dc.date.submitted2019-02-13
dc.identifier.citation[1] C. Jensen, C. Poole, S. McGlashan, M. Marko, Z. Issa, K. Vujcich, and S. Bowser, “Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ,” Cell biology international, vol. 28, no. 2, pp. 101-110, 2004.
[2] G. Wheway, L. Nazlamova, and J. T. Hancock, “Signaling through the primary cilium,” Frontiers in Cell and Developmental Biology, vol. 6, pp. 8, 2018.
[3] O. V. Plotnikova, E. N. Pugacheva, and E. A. Golemis, 'Primary cilia and the cell cycle,' Methods in cell biology, pp. 137-160: Elsevier, 2009.
[4] E. A. Nigg, and T. Stearns, “The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries,” Nature cell biology, vol. 13, no. 10, pp. 1154, 2011.
[5] E. A. Nigg, and J. W. Raff, “Centrioles, centrosomes, and cilia in health and disease,” Cell, vol. 139, no. 4, pp. 663-678, 2009.
[6] V. Singla, and J. F. Reiter, “The primary cilium as the cell's antenna: signaling at a sensory organelle,” science, vol. 313, no. 5787, pp. 629-633, 2006.
[7] A. D'Angelo, and B. Franco, “The dynamic cilium in human diseases,” Pathogenetics, vol. 2, no. 1, pp. 3, 2009.
[8] S. G. Basten, and R. H. Giles, “Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis,” Cilia, vol. 2, no. 1, pp. 6, 2013.
[9] R. J. Ferland, W. Eyaid, R. V. Collura, L. D. Tully, R. S. Hill, D. Al-Nouri, A. Al-Rumayyan, M. Topcu, G. Gascon, and A. Bodell, “Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome,” Nature genetics, vol. 36, no. 9, pp. 1008, 2004.
[10] H. R. Dawe, U. M. Smith, A. R. Cullinane, D. Gerrelli, P. Cox, J. L. Badano, S. Blair-Reid, N. Sriram, N. Katsanis, and T. Attie-Bitach, “The Meckel–Gruber syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation,” Human molecular genetics, vol. 16, no. 2, pp. 173-186, 2006.
[11] J. M. Gerdes, Y. Liu, N. A. Zaghloul, C. C. Leitch, S. S. Lawson, M. Kato, P. A. Beachy, P. L. Beales, G. N. DeMartino, and S. Fisher, “Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response,” Nature genetics, vol. 39, no. 11, pp. 1350, 2007.
[12] S. L. Bielas, J. L. Silhavy, F. Brancati, M. V. Kisseleva, L. Al-Gazali, L. Sztriha, R. A. Bayoumi, M. S. Zaki, A. Abdel-Aleem, and R. O. Rosti, “Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies,” Nature genetics, vol. 41, no. 9, pp. 1032, 2009.
[13] H. R. Dawe, M. Adams, G. Wheway, K. Szymanska, C. V. Logan, A. A. Noegel, K. Gull, and C. A. Johnson, “Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton,” Journal of cell science, vol. 122, no. 15, pp. 2716-2726, 2009.
[14] M. Jacoby, J. J. Cox, S. Gayral, D. J. Hampshire, M. Ayub, M. Blockmans, E. Pernot, M. V. Kisseleva, P. Compere, and S. N. Schiffmann, “INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse,” Nature genetics, vol. 41, no. 9, pp. 1027, 2009.
[15] C. J. Wiens, Y. Tong, M. A. Esmail, E. Oh, J. M. Gerdes, J. Wang, W. Tempel, J. B. Rattner, N. Katsanis, and H.-W. Park, “The Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signalling,” Journal of Biological Chemistry, pp. jbc. M109. 070953, 2010.
[16] N. Sugiyama, T. Tsukiyama, T. P. Yamaguchi, and T. Yokoyama, “The canonical Wnt signaling pathway is not involved in renal cyst development in the kidneys of inv mutant mice,” Kidney international, vol. 79, no. 9, pp. 957-965, 2011.
[17] N. Sorusch, K. Wunderlich, K. Bauss, K. Nagel-Wolfrum, and U. Wolfrum, 'Usher syndrome protein network functions in the retina and their relation to other retinal ciliopathies,' Retinal Degenerative Diseases, pp. 527-533: Springer, 2014.
[18] G. Wheway, D. A. Parry, and C. A. Johnson, “The role of primary cilia in the development and disease of the retina,” Organogenesis, vol. 10, no. 1, pp. 69-85, 2014.
[19] E. C. Mariman, R. G. Vink, N. J. Roumans, F. G. Bouwman, C. T. Stumpel, E. E. Aller, M. A. van Baak, and P. Wang, “The cilium: a cellular antenna with an influence on obesity risk,” British Journal of Nutrition, vol. 116, no. 4, pp. 576-592, 2016.
[20] K. M. Bujakowska, Q. Liu, and E. A. Pierce, “Photoreceptor cilia and retinal ciliopathies,” Cold Spring Harbor perspectives in biology, pp. a028274, 2017.
[21] V. Hartill, K. Szymanska, S. M. Sharif, G. Wheway, and C. A. Johnson, “Meckel–Gruber syndrome: An update on diagnosis, clinical management, and research advances,” Frontiers in pediatrics, vol. 5, pp. 244, 2017.
[22] W. J. Polacheck, R. Li, S. G. Uzel, and R. D. Kamm, “Microfluidic platforms for mechanobiology,” Lab on a Chip, vol. 13, no. 12, pp. 2252-2267, 2013.
[23] S. H. Low, S. Vasanth, C. H. Larson, S. Mukherjee, N. Sharma, M. T. Kinter, M. E. Kane, T. Obara, and T. Weimbs, “Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease,” Developmental cell, vol. 10, no. 1, pp. 57-69, 2006.
[24] J. W. Song, W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama, “Computer-controlled microcirculatory support system for endothelial cell culture and shearing,” Analytical chemistry, vol. 77, no. 13, pp. 3993-3999, 2005.
[25] L. Chau, M. Doran, and J. Cooper-White, “A novel multishear microdevice for studying cell mechanics,” Lab on a Chip, vol. 9, no. 13, pp. 1897-1902, 2009.
[26] E. Gutierrez, B. G. Petrich, S. J. Shattil, M. H. Ginsberg, A. Groisman, and A. Kasirer-Friede, “Microfluidic devices for studies of shear-dependent platelet adhesion,” Lab on a Chip, vol. 8, no. 9, pp. 1486-1495, 2008.
[27] M. J. Moehlenbrock, A. K. Price, and R. S. Martin, “Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes,” Analyst, vol. 131, no. 8, pp. 930-937, 2006.
[28] K. Jang, K. Sato, K. Igawa, U.-i. Chung, and T. Kitamori, “Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening,” Analytical and bioanalytical chemistry, vol. 390, no. 3, pp. 825-832, 2008.
[29] D. Huh, H. Fujioka, Y.-C. Tung, N. Futai, R. Paine, J. B. Grotberg, and S. Takayama, “Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems,” Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18886-18891, 2007.
[30] K.-J. Jang, and K.-Y. Suh, “A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells,” Lab on a Chip, vol. 10, no. 1, pp. 36-42, 2010.
[31] H. Praetorius, and K. R. Spring, “Bending the MDCK cell primary cilium increases intracellular calcium,” Journal of Membrane Biology, vol. 184, no. 1, pp. 71-79, 2001.
[32] S. Rydholm, T. Frisk, J. M. Kowalewski, H. A. Svahn, G. Stemme, and H. Brismar, “Microfluidic devices for studies of primary cilium mediated cellular response to dynamic flow conditions,” Biomedical microdevices, vol. 10, no. 4, pp. 555-560, 2008.
[33] E. A. Schwartz, M. L. Leonard, R. Bizios, and S. S. Bowser, “Analysis and modeling of the primary cilium bending response to fluid shear,” American Journal of Physiology-Renal Physiology, vol. 272, no. 1, pp. F132-F138, 1997.
[34] K. Hattori, Y. Munehira, H. Kobayashi, T. Satoh, S. Sugiura, and T. Kanamori, “Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function,” Journal of bioscience and bioengineering, vol. 118, no. 3, pp. 327-332, 2014.
[35] L. C. Espinha, D. A. Hoey, P. R. Fernandes, H. C. Rodrigues, and C. R. Jacobs, “Oscillatory fluid flow influences primary cilia and microtubule mechanics,” Cytoskeleton, vol. 71, no. 7, pp. 435-445, 2014.
[36] A. Wann, and M. Knight, “Primary cilia elongation in response to interleukin-1 mediates the inflammatory response,” Cellular and Molecular Life Sciences, vol. 69, no. 17, pp. 2967-2977, 2012.
[37] T. T. Yang, P. J. Hampilos, B. Nathwani, C. H. Miller, N. D. Sutaria, and J. C. Liao, “Superresolution STED microscopy reveals differential localization in primary cilia,” Cytoskeleton, vol. 70, no. 1, pp. 54-65, 2013.
[38] H. Ishikawa, J. Thompson, J. R. Yates, and W. F. Marshall, “Proteomic analysis of mammalian primary cilia,” Current Biology, vol. 22, no. 5, pp. 414-419, 2012.
[39] F. M. White, “Solutions of the Newtonian viscous flow equations,” Viscous fluid flow, pp. 105-217, 1991.
[40] C. L. Rieder, C. G. Jensen, and L. C. Jensen, “The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line,” Journal of ultrastructure research, vol. 68, no. 2, pp. 173-185, 1979.
[41] J. Kim, J. E. Lee, S. Heynen-Genel, E. Suyama, K. Ono, K. Lee, T. Ideker, P. Aza-Blanc, and J. G. Gleeson, “Functional genomic screen for modulators of ciliogenesis and cilium length,” Nature, vol. 464, no. 7291, pp. 1048, 2010.
[42] A. M. Nguyen, Y.-N. Young, and C. R. Jacobs, “The primary cilium is a self-adaptable, integrating nexus for mechanical stimuli and cellular signaling,” Biology open, vol. 4, no. 12, pp. 1733-1738, 2015.
[43] R. C. Geiger, C. D. Kaufman, A. P. Lam, G. S. Budinger, and D. A. Dean, “Tubulin acetylation and histone deacetylase 6 activity in the lung under cyclic load,” American journal of respiratory cell and molecular biology, vol. 40, no. 1, pp. 76-82, 2009.
[44] Y. Li, J. S. Chu, K. Kurpinski, X. Li, D. M. Bautista, L. Yang, K.-L. P. Sung, and S. Li, “Biophysical regulation of histone acetylation in mesenchymal stem cells,” Biophysical journal, vol. 100, no. 8, pp. 1902-1909, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71367-
dc.description.abstract在哺乳動物細胞中常見的主纖毛 (primary cilium) ,是一種負責偵測環境中各種變化的胞器,從研究顯示流體、化學分子、光等刺激都需要透過主纖毛來傳遞刺激訊號至細胞內。其中,物理刺激的偵測 (mechanosensation) 為主纖毛的主要功能,且與許多疾病相關聯。然而,由於主纖毛的尺寸在微米等級,一般研究方法無法給予精準的刺激,同時,由於繞射極限,直接觀察主纖毛在刺激下的變化更為困難,目前研究多利用主纖毛的長度、細胞內鈣離子濃度、基因表現來觀測主纖毛的功能。
微流道 (microfluidics) 是一種在微米等級下控制流體的技術,具有體積小、價格低廉、低樣本需求量等優點。其中精準的流體控制,為微流道特別適合運用在主纖毛研究上的原因,無論是給予流場刺激、液體的切換,都較傳統的研究方法更加方便。而在超解析顯微鏡 (superresolution microscopy) 的發展下,主纖毛內部的蛋白質變化得以被觀測到,不論是蛋白質的組成、移動或是數量,都能透過此技術來進行分析,進而得知主纖毛是如何調控及傳輸這些外部刺激到細胞裡。
為提供一個能給予適當刺激、在活細胞以及免疫染色下都方便觀察的實驗架構,本研究開發出結合多流速、可拆卸式等優點的微流道系統,透過給予精準的流場刺激,可用於觀察活細胞下的主纖毛的變化,同時也能在拆解之後針對想觀察的蛋白質進行免疫染色,最後透過螢光顯微鏡或是超解析顯微鏡來分析刺激之後的結果。在實驗中,我們最佳化細胞培養的參數來產生高密度的主纖毛,也觀測到在活細胞下主纖毛受到流場刺激的變化。透過免疫染色以及觀察大量的主纖毛,我們進一步發現主纖毛在統計上的變化。最後,在超解析顯微鏡的幫助下,我們發現主纖毛中的蛋白質分佈會受到流場的刺激而改變,我們相信此結果與主纖毛的訊息傳遞功能高度相關。未來期望此系統除了能完成更多有關上述的實驗之外,亦具有潛力與蛋白質譜 (protein mass spectrometry) 結合,進行高通量的刺激同時針對主纖毛特有蛋白進行更深入的研究。
zh_TW
dc.description.abstractPrimary cilium is an organelle found in most mammalian cells. It is known that primary cilium can sense fluid flow, molecules and light in order to transfer these stimulations into cells. Mechanosensation which senses the mechanical stimulation and transfers to cells is the main function of primary cilia and associated with various syndrome. Due to the size of primary cilium is around few micrometers, conventional research methods cannot provide precise stimulation. At the same time, diffraction limit also makes direct observation of primary cilia more difficult. Presently, primary cilium length, intercellular calcium concentration and gene expression are commonly used to observe the function of primary cilium.
Microfluidics is a method which control fluid under micrometer scale. It has the advantages of small volume, low cost and low sample demand compare to conventional methods. The ability of applying flow stimulation and switching fluid accurately makes microfluidic the most suitable tools to study primary cilia. Under the development of superresolution microscopy, protein composition, movement and numbers can be observed inside the primary cilium. This powerful tool help scientists study more detailed about mechanosensation of primary cilium.
A device which can provide proper stimulation, real-time cilia bending and ability to do immunostaining is needed. We develop a multiple flow velocity and resealable microfluidic system. By applying precise flow velocity, it is capable to observe primary cilia change in live cell, do immunostaining of the desired protein after stimulation and analyze the result using epifluorescence or superresolution microscopy. In the experiments, we optimized the protocol to promote ciliogenesis, observed the bending in both live and immunostained images under the flow stimulation. Last but not least, by superresolution microscopy, we found the protein distribution inside primary cilia has huge differences before and after flow stimulation. We believe that the result is highly correlated to the signal transduction of primary cilia. In future work, we plan to do more relative experiments can be done by using our system. Also, the system has the potential to integrate with protein mass spectrometry to do high throughput protein analysis for primary cilia specific proteins.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:59:33Z (GMT). No. of bitstreams: 1
ntu-107-R05945009-1.pdf: 4409158 bytes, checksum: 945be651a1150ec39105a7fd1901dc3d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................... #
誌謝 ................................................................................................................................... i
中文摘要 .......................................................................................................................... ii
ABSTRACT .................................................................................................................... iii
CONTENTS ...................................................................................................................... v
LIST OF FIGURES ........................................................................................................ vii
LIST OF TABLES ........................................................................................................... ix
Chapter 1 Introduction ..................................................................................... 1
1.1 Background ................................................................................................ 1
1.2 Literature review ........................................................................................ 5
1.2.1 Mechanical stimulation of primary cilia .................................... 5
1.2.2 Biological stimulation and other researches of primary cilia .. 10
1.2.3 Summary .................................................................................. 13
1.3 Research motivation................................................................................. 16
1.4 Thesis structure ........................................................................................ 16
Chapter 2 Experimental Design ..................................................................... 18
2.1 The microfluidic channel ......................................................................... 18
2.1.1 Navier-Stokes equation ............................................................ 18
2.1.2 Shear stress .............................................................................. 18
2.2 Primary cilia ............................................................................................. 19
2.2.1 Primary cilia formation ............................................................ 19
2.2.2 Primary cilia stiffness .............................................................. 19
Chapter 3 Materials and Methods ................................................................. 20
3.1 The microfluidic channel designs ............................................................ 20
3.2 Fabrication of the microfluidic device ..................................................... 21
3.2.1 PMMA mold fabrication by CNC ........................................... 21
3.2.2 PDMS soft lithography ............................................................ 23
3.3 Cell culture conditions ............................................................................. 24
3.4 Flow stimulation protocol using microfluidic device .............................. 26
3.4.1 Real-time bending experiment................................................. 26
3.4.2 In-situ fixation and immunostained experiment ...................... 26
3.5 Immunostaining ....................................................................................... 27
3.6 Imaging and data analysis ........................................................................ 28
3.7 Superresolution microscopy..................................................................... 29
Chapter 4 Results and Discussion .................................................................. 30
4.1 Simulation of microfluidic channel ......................................................... 30
4.2 Primary cilia length after cytochalasin D treatment ................................ 31
4.3 In-situ cilia fixation .................................................................................. 32
4.4 Real-time cilia bending under various flow rates .................................... 34
4.5 Observing the mechanosensation of immunostained primary cilia ......... 37
4.6 Molecular localization of ciliary proteins upon flow stimulation ............ 42
Chapter 5 Conclusion ...................................................................................... 44
Chapter 6 Future Work ................................................................................... 46
Reference ......................................................................................................................... 48
dc.language.isozh-TW
dc.subject超解析顯微鏡zh_TW
dc.subject微流道zh_TW
dc.subject主纖毛zh_TW
dc.subjectPrimary Ciliaen
dc.subjectSuperresolution Microscopyen
dc.subjectMicrofluidicen
dc.title整合微流道系統與超解析顯微鏡進行細胞主纖毛之力學刺激反應研究zh_TW
dc.titleA Microfluidic Device Integrated Superresolution Microscopy for
In-situ Fixation and Mechanosensation of Primary Cilia
en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王婉菁(Won-Jing Wong),董奕鍾(Yi-Chung Tung)
dc.subject.keyword微流道,主纖毛,超解析顯微鏡,zh_TW
dc.subject.keywordMicrofluidic,Primary Cilia,Superresolution Microscopy,en
dc.relation.page50
dc.identifier.doi10.6342/NTU201900442
dc.rights.note有償授權
dc.date.accepted2019-02-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved