請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71366完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管傑雄(Chieh-Hsiung Kuan) | |
| dc.contributor.author | Heng-Wei Hsu | en |
| dc.contributor.author | 許恆瑋 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:59:30Z | - |
| dc.date.available | 2022-02-19 | |
| dc.date.copyright | 2019-02-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-13 | |
| dc.identifier.citation | 1. Lan, Y.W., et al., Polymer‐Free Patterning of Graphene at Sub‐10‐nm Scale by Low‐Energy Repetitive Electron Beam. 2014. 10(22): p. 4778-4784.
2. Lerch, W., et al. Experimental and theoretical results of dopant activation by a combination of spike and flash annealing. in Junction Technology, 2007 International Workshop on. 2007. IEEE. 3. net/, S.I.A.J.h.w.i., International Technology Roadmap for Semiconductors 2005 Edition. 2006. 4. Fahad, H.M. and M.M.J.S.r. Hussain, Are nanotube architectures more advantageous than nanowire architectures for field effect transistors? 2012. 2: p. 475. 5. Sheu, B., et al. EP1: Moore's law challenges below 10nm: Technology, design and economic implications. in Solid-State Circuits Conference-(ISSCC), 2015 IEEE International. 2015. IEEE. 6. Geim, A.K. and I.V.J.N. Grigorieva, Van der Waals heterostructures. 2013. 499(7459): p. 419. 7. Shavanova, K., et al., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. 2016. 16(2): p. 223. 8. Booker, R.D. and E. Boysen, Nanotechnology for dummies. 2005: John Wiley & Sons. 9. Mouri, S., Y. Miyauchi, and K.J.N.l. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. 2013. 13(12): p. 5944-5948. 10. Kadantsev, E.S. and P.J.S.S.C. Hawrylak, Electronic structure of a single MoS2 monolayer. 2012. 152(10): p. 909-913. 11. Du, H., et al., Recent developments in black phosphorus transistors. 2015. 3(34): p. 8760-8775. 12. Liu, Z., S.P. Lau, and F.J.C.S.R. Yan, Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. 2015. 44(15): p. 5638-5679. 13. Fiori, G. and G. Iannaccone. The challenging promise of 2D materials for electronics. in Electron Devices Meeting (IEDM), 2015 IEEE International. 2015. IEEE. 14. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. 2010. 4(5): p. 2695-2700. 15. Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. 2011. 11(12): p. 5111-5116. 16. Dhakal, K.P., et al., Confocal absorption spectral imaging of MoS 2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS 2. 2014. 6(21): p. 13028-13035. 17. Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. 2010. 105(13): p. 136805. 18. Li, Z.-W., et al., Light–matter interaction of 2D materials: Physics and device applications. 2017. 26(3): p. 036802. 19. Liu, K.-K., et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. 2012. 12(3): p. 1538-1544. 20. Simbulan, K.B.C., et al., A Standard and Reliable Method to Fabricate Two-Dimensional Nanoelectronics. 2018(138): p. e57885. 21. Dolui, K., I. Rungger, and S.J.P.r.B. Sanvito, Origin of the n-type and p-type conductivity of MoS 2 monolayers on a SiO 2 substrate. 2013. 87(16): p. 165402. 22. McDonnell, S., et al., Defect-dominated doping and contact resistance in MoS2. 2014. 8(3): p. 2880-2888. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71366 | - |
| dc.description.abstract | 本研究在於利用電子束轟擊調變二硫化鉬之能帶結構及電子傳輸特性,藉由觀察PL光譜的變化以對應電性的傳輸特性改變。透過電子束轟擊二硫化鉬產生硫空缺,利用拉曼及PL光譜量測進而發現半高寬及Trion峰值訊號的改變,且觀察到PL藍移的現象,藉由不同電子束劑量對應到的PL特徵峰值位移及激子(excitonA、B)及Trion特徵峰值比例增減及對照三點電性量測結果,明顯改變電子傳輸性質及能力。在電子束特定劑量下轟擊,光學性質中PL光譜上藍移最大值及拉曼的半高寬最大值。電子傳輸性質由初始狀態下為P型,在轟擊之下轉為N型並且電子傳輸能力Ion / Ioff 由初始狀態 102在電子束的轟擊之下顯著提升至106,增強四個數量級。由實驗結果可以得知,藉由電子束的劑量調變,在二硫化鉬中產生適當的硫空缺不但改變電子躍遷行為及能帶結構,並能大幅提升二硫化鉬電子傳輸能力。未來能應用於光電元件上,調變二維材料元件的發光特性及增益光電晶體的電性傳輸。 | zh_TW |
| dc.description.abstract | This study consists in the use of electron beam bombardment to modify the energy band structure and electron transport properties of molybdenum disulfide, by observing changes in the PL spectrum to correspond to electrical transmission characteristics. Sulfur vacancy was generated by bombardment of molybdenum disulfide by electron beam, and the change of FWHM and Trion peak signal was found by Raman and PL spectroscopy, and the phenomenon of PL blue shift was observed, and PL corresponding to different electron beam doses was observed. The characteristic peak displacement and exciton A,exciton B) and Trion characteristic peak ratio increase and decrease and the comparison of three-point electrical measurement results significantly change the electron transport properties and capabilities. Bombardment at a specific dose of electron beam, the maximum value of the blue shift on the PL spectrum and the maximum half width of the Raman in the optical properties. The electron transport property is P-type from the initial state, and is converted to the N-type under bombardment and the electron transport capability Ion / Ioff is significantly increased from the initial state 102 to 106 under the bombardment of the electron beam, increasing by four orders of magnitude. It can be known from the experimental results that the appropriate sulfur vacancies in the molybdenum disulfide not only change the electronic transition behavior and the energy band structure, but also greatly enhance the electron transporting ability of molybdenum disulfide by the dose modulation of the electron beam. In the future, it can be applied to optoelectronic components to modulate the luminescence properties of two-dimensional material components and the electrical transmission of gain optoelectronic crystals. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:30Z (GMT). No. of bitstreams: 1 ntu-108-R05945001-1.pdf: 4035272 bytes, checksum: 093d41facbd161a73da5e2e8586a1401 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii 英文摘要 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 半導體元件之微縮極限 1 1.2 半導體元件之歷史背景 3 1.3 二維材料的興起 4 1.4 二維材料的介紹 9 1.4.1 石墨烯(Graphene) 9 1.4.3 黑磷烯(Black Phosphrorene) 12 1.5 二維材料的比較 13 第二章 理論基礎 18 2.1 拉曼量測原理 18 2.2 二硫化鉬之光激螢光光譜 20 第三章 實驗儀器與元件製備 23 3.1 製程儀器簡介 23 3.1.1 熱氧化爐管 23 3.1.2 微影技術與電子束微影系統(Electron Beam Lithography) 23 3.1.3 電子束蒸鍍機(Electron Beam Evaporator) 26 3.2 量測儀器簡介 27 3.2.1 微拉曼光譜量測系統(μ-Raman) 27 3.2.2 光激發螢光頻譜( Photoluminescence, PL ) 28 3.2.3 原子力顯微鏡(Atomic Force Microscope, AFM) 29 3.2.4 掃描式電子顯微鏡(SEM) 30 3.3 元件設計介紹 32 3.4 元件製備流程 33 3.4.1 化學氣相沉積( Chemical Vapor Deposition, CVD )成長二硫化鉬 33 3.4.2 標準晶片基板製作流程 35 3.4.3 二硫化鉬( MoS2 )轉印( Transfer )流程 36 3.4.4 定義汲極與源極電極的製作 37 第四章 實驗結果與分析 39 4.1 二硫化鉬辨識與厚度分析 39 4.1.1 拉曼訊號材料辨識 39 4.1.2 原子力顯微鏡檢測厚度 40 4.2 元件光學性質及電學特性 40 第五章 結論 49 參考資料 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二硫化鉬(molybdenum disulfide) | zh_TW |
| dc.subject | 電子束轟擊(electron beam bombardment) | zh_TW |
| dc.subject | 光致發光量測系統(Photoluminescence spectroscopy) | zh_TW |
| dc.subject | 能帶結構調變 | zh_TW |
| dc.subject | 電子躍遷行為 | zh_TW |
| dc.subject | 電子傳輸性質 | zh_TW |
| dc.subject | Modulation of band structure | en |
| dc.subject | Electron beam bombardment | en |
| dc.subject | Photoluminescence spectroscopy | en |
| dc.subject | Molybdenum disulfide | en |
| dc.subject | Electronic transition behavior | en |
| dc.subject | Electron transport properties | en |
| dc.title | 電子束轟擊對背向閘極式單層二硫化鉬元件光學及電性之探討 | zh_TW |
| dc.title | Optical and electrical properties of back-gate single-layer molybdenum disulfide device by electron beam bombardment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫允武(Yuen-Wuu Suen),孫建文,藍彥文,蘇文生 | |
| dc.subject.keyword | 二硫化鉬(molybdenum disulfide),電子束轟擊(electron beam bombardment),光致發光量測系統(Photoluminescence spectroscopy),能帶結構調變,電子躍遷行為,電子傳輸性質, | zh_TW |
| dc.subject.keyword | Molybdenum disulfide,Electron beam bombardment,Photoluminescence spectroscopy,Modulation of band structure,Electronic transition behavior,Electron transport properties, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201900552 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-02-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
