Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71365
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳凱風
dc.contributor.authorTzu-Lu Linen
dc.contributor.author林子路zh_TW
dc.date.accessioned2021-06-17T05:59:28Z-
dc.date.available2019-02-15
dc.date.copyright2019-02-15
dc.date.issued2019
dc.date.submitted2019-02-13
dc.identifier.citationReferences
[1] Murray Gell-Mann. Symmetries of Baryons and Mesons. Physical Review, 125(3):1067–1084, feb 1962.
[2] J Spanggaard. EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics DELAY WIRE CHAMBERS A USERS GUIDE.Technical report, 1998.
[3] Murray Gell-Mann. The Eightfold Way: A Theory of strong interaction symmetry,1961.
[4] Steven Weinberg. A Model of Leptons. Physical Review Letters, 19(21):1264–1266, nov1967.
[5] Sheldon L Glashow and Murray Gell-Mann. Gauge theories of vector particles. Annals of Physics, 15(3):437–460, sep 1961.
[6] The ATLAS The ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. jul 2012.
[7] EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Technical
report, 2013.
[8] Nima Arkani-Hamed, Tao Han, Michelangelo Mangano, and Lian-Tao Wang. Physics Opportunities of a 100 TeV Proton-Proton Collider. nov 2015.
[9] Wolfgang Adam, R Frühwirth, Are Strandlie, and T Todor. Reconstruction of Electrons with the Gaussian-Sum Filter in the CMS Tracker at the LHC, jan 2005.
[10] CMS CMS Collaboration. Particle-flow reconstruction and global event description with the CMS detector. jun 2017.
[11] Daniele Bertolini, Philip Harris, Matthew Low, and Nhan Tran. Pileup per particle identification. Journal of High Energy Physics, 2014(10):59, oct 2014.
[12] Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. Journal of Instrumentation, 12(02):P02014, feb 2017.
[13] Identification of b quark jets at the CMS Experiment in the LHC Run 2, 2016.
[14] Measurements of properties of the Higgs boson in the diphoton decay channel with the full 2016 data set, 2017.
[15] S. L. Glashow, J. Iliopoulos, and L. Maiani. Weak Interactions with Lepton-Hadron Symmetry. Physical Review D, 2(7):1285–1292, oct 1970.
[16] J.A. Aguilar-Saavedra and B.M. Nobre. Rare top decays t→c, t→cg and CKM unitarity.Physics Letters B,553(3-4):251–260, feb 2003.
[17] Gongru Lu, Furong Yin, Xuelei Wang, and Lingde Wan. Rare top quark decays t → cV
in the top-color-assisted technicolor model. Physical Review D, 68(1):015002, jul 2003.
[18] ECFA 2016: Prospects for selected standard model measurements with the CMS experiment at the High-Luminosity LHC, 2017.
[19] LHC Design Report Vol.1: The LHC Main Ring. 2004.
[20] Arabella Martelli. The CMS HGCAL detector for HL-LHC upgrade. aug 2017.
[21] First beam tests of prototype silicon modules for the CMS High Granularity Endcap Calorimeter. Journal of Instrumentation, 13(10):P10023–P10023, oct 2018.
[22] Geant4 a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, jul 2003.
[23] S Callier, F Dulucq, C de La Taille, G Martin-Chassard, and N Seguin-Moreau.SKIROC2, front end chip designed to readout the Electromagnetic CALorimeter at the ILC. Journal of Instrumentation, 6(12):C12040–C12040,dec 2011.
[24] Quark-gluon tagging in the forward region of ATLAS at the LHC. Technical report.
[25] Tom Cornelis. Quark-gluon Jet Discrimination At CMS. Technical report, 2014.
[26] Giorgia Rauco. Distinguishing quark and gluon jets at the LHC, jan 2017.
[27] Jason Gallicchio and Matthew D. Schwartz. Quark and Gluon Tagging at the LHC.jun 2011.
[28] Jesse Thaler and Ken Van Tilburg. Identifying Boosted Objects with N-subjettiness.nov 2010.
[29] Z Chen, Clemens Lange, Edward John Titman Scott, Emilio Meschi, and Christopher Seez. Offline Reconstruction Algorithms for the CMS High Granularity Calorimeter for
HL-LHC, nov 2017.
[30] Patrick T Komiske, Eric M Metodiev, and Matthew D Schwartz. Deep learning in color:towards automated quark/gluon jet discrimination. Technical report, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71365-
dc.description.abstract本研究利用在 2016 年大強子對撞機測束的新型高空間、高時間解析度矽量能器模組所獲得之實驗數據作為基礎,提出一種辨識粒子的鑑別變數。藉由電子測束能量 20, 32, 70, 100, 150, 200, 250 吉電子伏特及介子測束能量 125 吉電子伏特之實驗數據測得該量能器模組之能量線性度與能量解析度,並以測束之橫向與縱向粒子射叢特徵比較,確認摩地卡羅模擬之有效性。
在測束落於量能器模組首層中心範圍2毫米乘2毫米的範圍、末層測量能量小於3百萬電子伏特及該鑑別變數取於粒子射叢最大位置之條件下雙點相關變數的有效性獲得證實。並進一步以蒙地卡羅模擬電子與似電子-介子在同能量下應用該變數後,得到粒子在高時空間粒度量能器模組內粒子射叢之相異特徵,顯示未來應用的可能性。
zh_TW
dc.description.abstractThis study proposes a particle identification discriminator analysis which based on the new-architected detector module with high spatial and temporal resolution com- posed of silicon-pads which was tested in 2016 CERN H2 testbeam campaign. The linearity and energy resolution measurements of the detector is initially obtained using the testbeam data of electron energies of 20, 32, 70, 100, 150, 200, 250GeV, pion energy of 125GeV while the longitudinal and transverse shower profiles are verified from the data/MC comparison.
The validity of the discriminator two-point-correlation variable is then verified under the requirements of the alignment of testbeam with the center of the first layer within 2mm × 2mm window and the profile of the variable is acquired at which the shower maximum of the event is developed. Eventually, the distinctive signatures of electron and pion shower shape are presented by comparing the MC profiles, showing the disparity behavior in HGCAL and suggesting its potential for further application.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:59:28Z (GMT). No. of bitstreams: 1
ntu-108-R02222018-1.pdf: 21472963 bytes, checksum: 3aeac80a3fe6e3b90b1127808d543fa1 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContents
1 Introduction . . . . . . . . . . . . . . . . . 1
1.1 Brief history of particle detectors . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Cloud Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Bubble Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Spark Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Wire Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The Next Frontier of Particle Physics . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Expected Physics Object Performance at HL-LHC . . . . . . . . . . . . . . . 8
1.3.1 Electron identification . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Photon identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Pileup mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Jet performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.5 Performance of b jet tagging . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.6 Performance of missing ET . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 CMS physics channel measurement improvement . . . . . . . . . . . . . . . 10
2 Experimental Apparatus . . . . . . . . . . 13
2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The Compact Muon Solenoid Detector . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Magnet Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Tracking Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Electromagnetic Calorimeter (ECAL) . . . . . . . . . . . . . . . . . . 19
2.2.5 Hadronic Calorimeters (HCAL) . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Muon Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.7 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 High Granularity Calorimeter in CMS 24
3.1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Challanges for the HGCAL upgrade . . . . . . . . . . . . . . . . . . 24
3.1.3 High Granularity and its Impact on Physics . . . . . . . . . . . . . . 25
3.2 Structure Design and Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 HGCAL Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Structural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Cassettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Active Elements and Electronics . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Silicon Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 Beam tests of the 2016 prototypes 38
4.1 Testbeam Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 The detector prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Module Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Module Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Module Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Pedestal and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Calibration with single particles . . . . . . . . . . . . . . . . . . . . . 45
5 The Detector Performance and Simulation 48
5.1 2016 Test Beam Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.1 Data and Simulation Samples . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Longitudinal and Transverse Shower Shapes . . . . . . . . . . . . . . 48
5.1.3 Longitudinal shower shapes . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.4 Lateral Shower Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.5 Calibration and Physical Performance . . . . . . . . . . . . . . . . . 54
6 Shower Profile Variable Study 58
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.1 Jet Substructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Two-point correlated discriminant . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.1 Data MC Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.2 Electron and pion shower profile comparison . . . . . . . . . . . . . . 65
7 Summary and Outlook 66
7.1 Brief summary of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Outlook on future improvements . . . . . . . . . . . . . . . . . . . . . . . . 66
A Plots of 2016 HGCAL testbeam module performance 68
A.1 Data/MC matching of containment variable . . . . . . . . . . . . . . . . . . 68
A.1.1 E1/E7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.1.2 E1/E19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.1.3 E7/E19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . 83
dc.language.isoen
dc.title應用CERN SPS CMS (緊湊渺子線圈) 高顆粒度電磁量能器原型之研究zh_TW
dc.titleStudy of CMS High Granularity Electromagnetic Calorimeter prototype at CERN SPSen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王名儒,張寶棣,裴斯達(Stathes Paganis)
dc.subject.keyword高時空間粒度量能器,大強子對撞機第二期升級計畫,2016 緊湊渺子線圈測束,雙點相關鑑別變數,zh_TW
dc.subject.keywordHGCAL,LHC Phase-2 Upgrade,2016 CMS testbeam,two- point correlation discriminator,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201900527
dc.rights.note有償授權
dc.date.accepted2019-02-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
20.97 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved