請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71364完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉瑞芬(Ruey-Fen Liou) | |
| dc.contributor.author | Ya-Zhu Yang | en |
| dc.contributor.author | 楊雅筑 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:59:27Z | - |
| dc.date.available | 2029-02-15 | |
| dc.date.copyright | 2019-02-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-13 | |
| dc.identifier.citation | 安寶貞。2001。亞磷酸與植物病害的防治。植病會刊 10:147-154。
呂秀英。2011。正確使用統計圖表呈現處理間比較。台灣農業研究 60:61-71。 林筑蘋。2009。亞磷酸誘導植物抗病機制之初探。碩士論文。台北:國立台灣大學。 黃宇昇。2017。以轉錄體學探討亞磷酸誘導番茄對疫病菌之抗性。碩士論文。台北:國立台灣大學。 劉興隆、沈原民、吳世偉。2008。亞磷酸防治葡萄露菌病。臺中區農業改良場研究彙報:57-68。 蔡志濃、安寶貞、王姻婷、王馨媛、胡瓊月。2009。利用中和後之亞磷酸溶液防治馬鈴薯與番茄晚疫病。台灣農業研究 58:185-195。 Alexander, D., Goodman, R. M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., and Ward, E. 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc. Natl. Acad. Sci. U.S.A. 90:7327-7331. Ann, P. J. 2000. New diseases and records of flowering potted plants caused by Phytophthora species in Taiwan. Plant Pathol. Bull. 9:1-10. Ann, P. J., Tsai, J. N., Wong, I. T., and Lin, C. Y. 2009. A simple technique, concentration and application schedule for using neutralized phosphorous acid to control Phytophthora diseases. Plant Pathol. Bull. 18: 155-165. Ann, P. J., Wong, I. T., and Tsai, J. N. 2010. New records of Phytophthora diseases of aromatic crops in Taiwan. Plant Pathol. Bull. 19: 53-68. Ann, P. J., Wang, I. T., and Tsai, J. N. 2011. Control of Phytophthora disease of fruit tree seedlings by neutralized phosphorous acid. J. Taiwan Agric. Res. 60:149-156. Attard, A., Gourgues, M., Callemeyn-Torre, N., and Keller, H. 2010. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol. 187: 449-460. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., and Doolittle, W. F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972-977. Bhaskar, P. B., Raasch, J. A., Kramer, L. C., Neumann, P., Wielgus, S. M., Austin-Phillips, S., and Jiang, J. 2008. Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biol. 8:8. Bindschedler, L. V., Dewdney, J., Blee, K. A., Stone, J. M., Asai, T., Plotnikov, J., Denoux, C., Hayes, T., Gerrish, C., Davies, D. R., Ausubel, F. M., and Bolwell, G. P. 2006. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 47:851-863. Boller, T., and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406. Bompeix, G., Fettouche, F., and Saindrenan, P. 1981. Mode d'action du phosethyl Al. Phytiatr. Phytopharm. 30:257-272. Borza, T., Peters, R., Wu, Y., Schofield, A., Rand, J., Ganga, Z., Al‐Mughrabi, K., Coffin, R., and Wang‐Pruski, G. 2017. Phosphite uptake and distribution in potato tubers following foliar and postharvest applications of phosphite‐based fungicides for late blight control. Ann. Appl. Biol. 170:127-139. Bower, L. A., and Coffey, M. D. 1985. Competitive fitness and survivability of metalaxyl-tolerant and phosphorous acid-tolerant isolates of Phytophthora capsici on green peppers and in soil. Phytopathology 75:1330. Bruin, G., and Edgington, L. 1981. Adaptive resistance in Peronosporales to metalaxyl. Can. J. Plant Pathol. 3:201-206. Brunings, A. M., Liu, G., Simonne, E. H., Zhang, S., Li, Y., and Datnoff, L. E. 2005. Are phosphorous and phosphoric acids equal phosphorous sources for plant growth? Electronic data information source/institute of food and agricultural sciences, university of Florida: HS1010. Burra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjö, S., Levander, F., Liljeroth, E., Andreasson, E., and Alexandersson, E. 2014. Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biol. 14:254. Cerqueira, A., Alves, A., Berenguer, H., Correia, B., Gomez-Cadenas, A., Diez, J. J., Monteiro, P., and Pinto, G. 2017. Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression. Plant Physiol. Biochem. 114:88-99. Chang, Y. H., Yan, H. Z., and Liou, R. F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16:123-136. Coffey, M. D., and Joseph, M. C. 1985. Effects of phosphorous acid and fosetyl-Al on the life cycle of Phytophthora cinnamomi and P. citricola. Phytopathology 75: 1042-1046. Cohen, Y., and Coffey, M. D. 1986. Systemic fungicides and the control of oomycetes. Annu. Rev. Phytopathol. 24:311-338. Conrath U. 2006. Systemic acquired resistance. Plant Signal Behav. 1:179-184. Conrath, U., Beckers, G. J., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19: 1062-1071. Conrath U., Pieterse, C. M. J., and Mauch-Mani, B. 2002. Priming in plant-pathogen interactions. Trends Plant Sci. 7:210-216. Dalio, R. J., Fleischmann, F., Humez, M., and Osswald, W. 2014. Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS One 9:e87860. Daniel, R., and Guest, D. 2005. Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 67:194-201. Daniel, R. and Guest, D. I. 2006. Phosphite induces defence responses in Arabidopsis thaliana challenged with Phytophthora cinnamomu. Phytopathology 96:S28-S28. Erwin, D. C., Bartnicki-Garcia, S., and Tsao, P. H. (Eds.) 1983. Phytophthora: its biology, taxonomy, ecology, and pathology. St. Paul, Minn: American Phytopathological Society (APS Press). Erwin, D. C., and Ribeiro, O. K. 1996. Phytophthora diseases worldwide. American Phytopathological Society (APS Press). Eshraghi, L., Anderson, J. P., Aryamanesh, N., McComb, J. A., Shearer, B., and Hardy, G. E. S. J. 2014. Defence signalling pathways involved in plant resistance and phosphite-mediated control of Phytophthora cinnamomi. Plant Mol. Biol. Report. 32:342-356. Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. S., and O’brien, P. 2011. Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathol. 60:1086-1095. Fawke, S., Doumane, M., and Schornack, S. 2015. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol. Mol. Biol. Rev. 79:263-280. Fenn, M., and Coffey, M. 1985. Further evidence for the direct mode of action of fosetyl-Al and phosphorous acid. Phytopathology 75:1064-1068. Förster, H., Adaskaveg, J. E., Kim, D. H., and Stanghellini, M. E. 1998. Effect of phosphite on tomato and pepper plants and on susceptibility of pepper to Phytophthora root and crown rot in hydroponic culture. Plant Dis. 82:1165-1170. Gill, U. S., Sun, L., Rustgi, S., Tang, Y., von Wettstein, D., and Mysore, K. S. 2018. Transcriptome‐based analyses of phosphite‐mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal target genes. Plant J. 93: 894-904. Grant, B. R., Grant, J. H., and Harris, J. 1992. Inhibition of growth of Phytophthora infestans by phosphate and phosphonate in defined media. Exp. Mycol. 16:240-244. Guest, D. I. 1984. Modification of defense responses in tobacco and capsicum following treatment with fosetyl-Al. Physiol. Plant Pathol. 25:125-134. Guest, D., and Grant, B. 1991. The complex action of phosphonates as antifungal agents. Biol. Rev. 66:159-187. Ho, H., and Ann, P. J., Chang, H. S. 1995. The genus Phytophthora in Taiwan. Taipei: Institute of Botany, Academia. Ho, H., and Jong, S. 1989. Phytophthora nicotianae (P. parasitica). Mycotaxon. 35:243-276. Hwu, F. Y., Lai, M. W., and Liou, R. F. 2017. PpMID1 plays a role in the asexual development and virulence of Phytophthora parasitica. Front. Microbiol. 8:610. Jeandet, P., Hébrard, C., Deville, M. A., Cordelier, S., Dorey, S., Aziz, A., and Crouzet, J. 2014. Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19:18033-18056. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. Judelson, H. S., and Blanco, F. A. 2005 The spores of Phytophthora: weapons of the plant destroyer. Nature Rev. Microbiol. 3: 47. Kebdani, N., Pieuchot, L., Deleury, E., Panabieres, F., Le Berre, J. Y., and Gourgues, M. 2010. Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytol. 5:248-257. King, M., Reeve, W., Van der Hoek, M. B., Williams, N., McComb, J., O’Brien, P. A., and Hardy, G. E. S. J. 2010. Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Mol. Gen. Genomics. 284: 425-435 Kroon, L. P. N. M., Brouwer, H., de Cock, A. W. A. M., and Govers, F. 2012. The genus Phytophthora Anno. 2012. Phytopathology 102:348-364. Lim, S., Borza, T., Peters, R. D., Coffin, R. H., Al-Mughrabi, K. I., Pinto, D. M., and Wang-Pruski, G. 2013. Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. J. Proteomics. 93:207-223. Liu, P., Li, B., Lin, M., Chen, G., Ding, X., Weng, Q.. 2016. Phosphite-induced reactive oxygen species production and ethylene and ABA biosynthesis mediate the control of Phytophthora capsici in pepper (Capsicum annuum). Funct. Plant Biol. 43: 563-574. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. 2011. Callose deposition: a multifaceted plant defense response. Mol. Plant Microbe Interact. 24:183-193. Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., and Andreu, A. B. 2012. Potassium phosphite primes defense responses in potato against Phytophthora infestans. J. Plant Physiol. 169:1417-1424. MacIntire, W., Winterberg, S., and Harbin, L. 1950. Fertilizer evaluation of certain phosphorus, phosporous and phosphoric materials by means of pot cultures. Agron. J. 42:543-549. Massoud, K., Barchietto, T., Le Rudulier, T., Pallandre, L., Didierlaurent, L., Garmier, M., Ambard-Bretteville, F., Seng, J. M., and Saindrenan, P. 2012. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiol. 159:286-298. Mauch-Mani, B., Baccelli, I., Luna, E., and Flors, V. 2017. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68:485-512. Meng, Y., Zhang, Q., Ding, W., and Shan, W. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5: 43-51. Molina, A., Hunt, M. D., and Ryals, J. A. 1998. Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell 10:1903-1914. Nemestothy, G. S., and Guest, D. I. 1990. Phytoalexin accumulation, phenylalanine ammonia lyase activity and ethylene biosynthesis in fosetyl-Al treated resistant and susceptible tobacco cultivars infected with Phytophthora nicotianae var. nicotianae. Physiol. Mol. Plant Pathol. 37:207-219. Peng, K. C., Wang, C. W., Wu, C. H., Huang, C. T., and Liou, R. F. 2015. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol. Plant Microbe Interact. 28:913-926. Pilbeam, R. A., Colquhoun, I. J., Shearer, B., Hardy, G. E. S. 2000. Phosphite concentration: its effect on phytotoxicity symptoms and colonisation by Phytophthora cinnamomiin three understorey species of Eucalyptus marginata forest. Aus-tralas. Plant Pathol. 29: 86. Pilbeam, R. A., Howard, K., Shearer, B. L., Hardy, G. E. S. 2011. Phosphite stimulated histological responses of Eucalyptus marginatato infection by Phytophthora cinnamomi. Trees 25: 1121-1131. Rizzo, D. M., Garbelotto, M., and Hansen, E. M. 2005. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 43:309-335. Spoel, S. H., and Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12:89-100. Thao, H. T. B., and Yamakawa, T. 2009. Phosphite (phosphorous acid): fungicide, fertilizer or bio-stimulator? Soil Sci. Plant Nutr. 55:228-234. Wang, Y., Meng, Y., Zhang, M., Tong, X., Wang, Q., Sun, Y., Quan, J., Govers, F., and Shan, W. 2011. Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. Mol. Plant Pathol. 12:187-201. White, A. K., and Metcalf, W. W. 2007. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol. 61:379-400. Yan, H. Z., and Liou, R. F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 43:430-438. Yang, X., Tyler, B. M., and Hong, C. 2017. An expanded phylogeny for the genus Phytophthora. IMA Fungus 8:355-384. Zhang, M., Wang, Q., Xu, K., Meng, Y., Quan, J., and Shan, W. 2011. Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen Phytophthora parasitica. PLoS One 6:e28114. Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20:10-16. Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Physiol. 12:414-420. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G., and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71364 | - |
| dc.description.abstract | 疫病菌屬(Phytophthora)被歸類於雜色藻界卵菌綱,包含多種危害猖獗的土壤傳播性病原菌,常對作物經濟產量及品質造成嚴重鉅害。亞磷酸(Phosphite)為針對卵菌類病害有良好效果的非農藥防治資材,受到廣泛運用,但關於亞磷酸的詳細作用機制仍待深入探討。為瞭解亞磷酸對疫病菌感染植物過程的影響,本研究觀察表現綠螢光蛋白的疫病菌Phytophthora parasitica (菌株代號1121)在以中和後亞磷酸(neutralized phosphorous acid; NPA)預處理之圓葉菸草(Nicotiana benthamiana)的感染情形,發現接種後 18小時,NPA 處理組及水處理控制組皆出現明顯病徵;接種後 24 小時,控制組的病斑面積和生物量都明顯比多於NPA 處理組,顯示 NPA 處理能增加菸草對疫病菌的抗病能力。以疫病菌游走子接種於NPA-預處理的菸草葉片50–70 分鐘後,靜止子平均發芽率約 31.3% ± 5.8%,相對的,控制組靜止子平均發芽率為 50.5% ± 9.4%。接種後 24至 30 小時,觀察每平方毫米菸草葉片形成孢囊的數量,發現會因 NPA的處理而受到抑制,並且有所延遲,但 NPA 處理對疫病菌在菸草的壓器形成率、菌絲分支以及壓器、吸器和孢囊等重要侵染構造的外觀皆未造成影響。另外, NPA 處理能有效促進菸草葉片癒傷葡聚醣(callose)的累積以及提升感染初期植物活化氧族(reactive oxygen species; ROS)的產生量。 | zh_TW |
| dc.description.abstract | The genus Phytophthora belongs to Oomycota, Chromista. Many species in this genus are notorious soil-borne plant pathogens, which cause economical losses and serious threats to food security worldwide. Phosphite is a well-known non-pesticide for effective control of Phytophthora blight. However, the mechanism of phosphite action is not fully elucidated. The purpose of this study is to know how phosphite impairs the development of disease caused by Phytophthora parasitica, which causes severe diseases in a wide variety of plant species. When tobacco (Nicotiana benthamiana) leaves were inoculated with green fluorescent protein (GFP)-expressing P. parasitica (strain 1121), disease symptoms appear on the leaves of both control and neutralized phosphorous acid (NPA)-pretreated plants at 18 h post inoculation. At 24 h post inoculation, the lesions in control leaves were bigger than those on NPA-treated leaves. When inoculated with zoospores of P. parasitica (1121), only about one third of cysts (31.3% ± 5.8%) germinated at 50-70 min post inoculation in NPA-pretreated leaves, whereas 50.5% ± 9.4% of cysts germinated in water-pretreated control leaves. The number of sporangia per square millimeter on tobacco leaves was reduced by NPA from 24 h to 30 h post inoculation. The results showed that the differentiation of sporangia in NPA-treated leaves was postponed. However, there was no effect of NPA on the rate of appressoria formation, hyphal branching, nor on the appearance of appressoria, haustoria, and sporangia of P. parasitica. Nevertheless, NPA induced callose deposition as well as reactive oxygen species (ROS) accumulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:27Z (GMT). No. of bitstreams: 1 ntu-108-R04633008-1.pdf: 19650620 bytes, checksum: 052f90bf5f0a9f54e80f24c1baa93567 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………………III
Abstract……………………………………………………………………………IV 壹、前人研究………………………………………………………………………1 1.1 疫病菌 (Phytophthora) 簡介…………………………………………………1 1.2 亞磷酸應用之介紹……………………………………………………………4 貳、材料與方法……………………………………………………………………12 2.1 菌種、供試植物………………………………………………………………12 2.2 中和後亞磷酸 (Neutralized phosphorous acid; NPA) 處理 ……………12 2.3 疫病菌接種試驗………………………………………………………………13 2.4 生物量 (biomass) 分析 ………………………………………………………14 2.5 疫病菌侵染過程實驗…………………………………………………………15 2.6 以 aniline blue 染植物細胞所累積之癒傷葡聚醣…………………………16 2.7 以 3,3-diaminobenzidine (DAB) 染色偵測 reactive oxygen sepsis (ROS) 16 2.8 統計分析方法…………………………………………………………………17 參、結果……………………………………………………………………………18 3.1 NPA 預處理菸草對疫病菌抗性能力的影響…………………………………18 3.2 NPA對疫病菌在菸草葉上病徵和生物量的影響 ……………………………19 3.3 NPA 對疫病菌在菸草上侵染過程的影響……………………………………20 3.4 亞磷酸預處理誘導植物產生防禦反應………………………………………22 肆、討論……………………………………………………………………………24 4.1 NPA 抑制靜止子發芽率和孢囊形成,但不影響壓器形成…………………24 4.2 NPA延緩疫病菌侵染進程? …………………………………………………24 4.3 NPA 並不會改變疫病菌型態…………………………………………………25 4.4 NPA 誘導植物產生防禦反應…………………………………………………26 4.5 未來方向和結語………………………………………………………………27 伍、參考文獻………………………………………………………………………29 陸、表 ……………………………………………………………………………37 柒、圖 ……………………………………………………………………………38 | |
| dc.language.iso | zh-TW | |
| dc.subject | 疫病菌侵染過程 | zh_TW |
| dc.subject | 中和後亞磷酸 | zh_TW |
| dc.subject | 亞磷酸 | zh_TW |
| dc.subject | 疫病菌 | zh_TW |
| dc.subject | Phytophthora parasitica | en |
| dc.subject | phosphite | en |
| dc.subject | neutralized phosphorous acid (NPA) | en |
| dc.subject | infection process | en |
| dc.title | 探討亞磷酸對疫病菌侵染過程的影響 | zh_TW |
| dc.title | To investigate the effect of neutralized phosphorous acid on the infection process of Phytophthora parasitica | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾顯雄(Shean-Shong Tzean),張雅君(Ya-Chun Chang) | |
| dc.subject.keyword | 疫病菌,亞磷酸,中和後亞磷酸,疫病菌侵染過程, | zh_TW |
| dc.subject.keyword | Phytophthora parasitica,phosphite,neutralized phosphorous acid (NPA),infection process, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU201900469 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-02-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 19.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
