Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71353
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王俊能(Chun-Neng Wang)
dc.contributor.authorKing-Chun Taien
dc.contributor.author戴景峻zh_TW
dc.date.accessioned2021-06-17T05:59:16Z-
dc.date.available2021-02-19
dc.date.copyright2019-02-19
dc.date.issued2018
dc.date.submitted2019-02-13
dc.identifier.citationAizen M, Vázquez D. 2006. Flowering phenologies of hummingbird plants from the temperate forest of southern South America: is there evidence of competitive displacement? Ecography 29(3): 357-366.
Altshuler DL. 2003. Flower color, hummingbird pollination, and habitat irradiance in four neotropical forests. BIOTROPICA 35(3): 344-355.
Anderson B, Johnson SD, Carbutt C. 2005. Exploitation of a specialized mutualism by a deceptive orchid. American Journal of Botany 92(8): 1342-1349.
Armbruster WS, Edwards ME, Debevec EM. 1994. Floral character displacement generates assemblage structure of western australian triggerplants (Stylidium). Ecology 75(2): 315-329.
Arnold SEJ, Savolainen V, Chittka L. 2009. Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators. Arthropod-Plant Interactions 3(1): 27-43.
Barrett SCH. 1996. The reproductive biology and genetics of island plants. Philosophical transactions - Royal Society. Biological sciences 351(1341): 725-733.
Bingham R, Orthner A. 1998. Efficient pollination of alpine plants. Nature 391(6664): 238-239.
Bischoff M, Lord JM, Robertson AW, Dyer AG. 2013. Hymenopteran pollinators as agents of selection on flower colour in the New Zealand mountains: salient chromatic signals enhance flower discrimination. New Zealand journal of botany 51(3): 181-193.
Bliss LC. 1962. Adaptations of arctic and alpine plants to environmental conditions. Arctic 15(2): 117-144.
Blomberg SP, Garland T, Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4): 717-745.
Bradshaw HD, Schemske DW. 2003. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426(6963): 176-178.
Briscoe AD, Chittka L. 2001. The evolution of color vision in insects. Annual Review of Entomology 46: 471-510.
Burgess KS, Morgan MM, Husband BC. 2007. Interspecific seed discounting and the fertility cost of hybridization in an endangered species. New Phytologist 177(1): 276-284.
Campbell DR, Bischoff M, Lord JM, Robertson AW. 2010. Flower color influences insect visitation in alpine New Zealand. Ecology 91(9): 2638-2649.
Carlquist S. 1974. Island Biology. New York: Columbia University Press.
Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA. 2004. Phylogenetic Overdispersion in Floridian Oak Communities. The American Naturalist 163(6): 823-843.
Chittka L. 1992. The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. Journal of Comparative Physiology A 170(5): 533-543.
Chittka L, Gumbert A, Kunze J. 1997. Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behavioral Ecology 8(3): 239-249.
Chittka L, Menzel R. 1992. The evolutionary adaptation of flower colours and the insect pollinators' colour vision. Journal of Comparative Physiology A 171(2): 171-181.
Chittka L, Shmida A, Troje N, Menzel R. 1994. Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vision research (Oxford) 34(11): 1489-1508.
Chittka L, Thomson JD, Waser NM. 1999. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86(8): 361-377.
Cronk Q, Ojeda I. 2008. Bird-pollinated flowers in an evolutionary and molecular context. Journal of experimental botany 59(4): 715-727.
Dangles O, Carpio C, Barragan AR, Zeddam JL, Silvain JF. 2008. Temperature as a key driver of ecological sorting among invasive pest species in the tropical andes. Ecological Applications 18(7): 1795-1809.
Danieli-Silva A, Magaly Tesserolli de Souza J, Julia Donatti A, Pamplona Campos R, Vicente-Silva J, Freitas L, Galarda Varassin I. 2012. Do pollination syndromes cause modularity and predict interactions in a pollination network in tropical high-altitude grasslands? Oikos 121(1): 35-43.
de Jager ML, Dreyer LL, Ellis AG. 2011. Do pollinators influence the assembly of flower colours within plant communities? Oecologia 166(2): 543-553.
Dray S, Dufour A-B. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of statistical software 22(4): 1-20.
Dyer AG. 2006. Discrimination of flower colours in natural settings by the bumblebee species Bombus terrestris (Hymenoptera: Apidae). Entomologia Generalis 28(4): 257 - 268.
Dyer AG, Boyd-Gerny S, McLoughlin S, Rosa MGP, Simonov V, Wong BBM. 2012. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proceedings of the Royal Society of London Series B: Biological Sciences 279(1742): 3606-3615.
Dyer AG, Chittka L. 2004. Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees ( Bombus terrestris ) as a case study. Journal of Comparative Physiology A 190(2): 105-114.
Dyer AG, Chittka L. 2004. Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. Journal of Comparative Physiology A 190(9): 759-763.
Eaton DAR, Fenster C, Hereford J, Huang S-Q, Ree R. 2012. Floral diversity and community structure in Pedicularis (Orobanchaceae). Ecology 93(sp8): S182-S194.
Fenster C, Armbruster WS, Wilson P, Dudash M, Thomson J. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution and Systematics 35(1): 375-403.
Ferraz-Grande FGA, Takaki M. 2001. Temperature dependent seed germination of Dalbergia nigra Allem (Leguminosae). Brazilian archives of biology and technology 44(4): 401-404.
Fishman L, Wyatt R. 1999. Pollinator-mediated competition, reproductive character displacement, and the evolution of selfing in Arenaria uniflora (Caryophyllaceae). Evolution 53(6): 1723-1733.
Garland T, Dickerman A, Janis C, Jones J. 1993. Phylogenetic analysis of covariance by computer simulation. Systematic biology 42(3): 265-292.
Giurfa M, Nez J, Chittka L, Menzel R. 1995. Colour preferences of flower-naive honeybees. Journal of Comparative Physiology A 177(3): 247-259.
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24(1): 129-131.
Heithaus ER. 1974. The role of plant-pollinator interactions in determining community structure. Annals of the Missouri Botanical Garden 61(3): 675-691.
Johnson SD, Bond WJ 1994. Red flowers and butterfly pollination III the fynbos of South Africa. Tasks for vegetation science, 137-148.
Kelber A, Henze MJ. 2013. Colour vision: parallel pathways intersect in drosophila. Current Biology 23(23): 1043-1045.
Kelber A, Vorobyev M, Osorio D. 2003. Animal colour vision – behavioural tests and physiological concepts. Biological Reviews 78(1): 81-118.
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11): 1463-1464.
Kevan P, Giurfa M, Chittka L. 1996. Why are there so many and so few white flowers? Trends in plant science 1(8): 252-252.
Kobayashi S, Denda T, Mashiba S, Iwamoto T, Doi T, Izawa M. 2015. Pollination partners of Mucuna macrocarpa (Fabaceae) at th e northern limit of its range. Plant Species Biology 30: 272-278.
Lázaro A, Hegland SJ, Totland Ø. 2008. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia 157(2): 249-257.
Li C-F, Chytrý M, Zelený D, Chen M-Y, Chen T-Y, Chiou C-R, Hsia Y-J, Liu H-Y, Yang S-Z, Yeh C-L, et al. 2013. Classification of Taiwan forest vegetation. Applied Vegetation Science 16(4): 698-719.
Linhart YB, Feinsinger P. 1980. Plant-hummingbird interactions: effects of island size and degree of specialization on pollination. Journal of Ecology 68(3): 745-760.
Lunau K. 2014. Visual ecology of flies with particular reference to colour vision and colour preferences. Journal of Comparative Physiology A 200(6): 497-512.
Lunau K. 2016. Flower colour: how bumblebees handle colours with perceptually changing hues. Current Biology 26(6): 229-231.
Lunau K, Maier EJ. 1995. Innate colour preferences of flower visitors. Journal of Comparative Physiology A 177(1): 1-19.
Lunau K, Papiorek S, Eltz T, Sazima M. 2011. Avoidance of achromatic colours by bees provides a private niche for hummingbirds. Journal of Experimental Biology 214(9): 1607-1612.
Makino T, Yokoyama J. 2015. Nonrandom composition of flower colors in a plant community: mtually different co-flowering natives and disturbance by aliens. PLoS ONE 10(12): e0143443.
McCall C, Primack RB. 1992. Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. American Journal of Botany 79(4): 434-442.
McEwen JR, Vamosi JC. 2010. Floral colour versus phylogeny in structuring subalpine flowering communities. Proceedings of the Royal Society of London Series B: Biological Sciences 277(1696): 2957-2965.
Medan D, Montaldo NH, Devoto M, Mantese A, Vasellati V, Roitman GG, Bartoloni NH. 2002. Plant-pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arctic, Antarctic, and Alpine Research 34(3): 233-241.
Moldenke AR. 1976. California pollination ecology and vegetation types. Phytologia 34: 305-361.
Morales CL, Traveset A. 2008. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Critical Reviews in Plant Sciences 27(4): 221-238.
Muchhala N, Johnsen S, Smith SD. 2014. Competition for hummingbird pollination shapes flower color variation in andean Solanaceae. Evolution 68(8): 2275-2286.
Muller H. 1880. The fertilisers of alpine flowers. Nature 21(534): 275-275.
Naiki A, Kato M. 1999. Pollination system and evolution of dioecy from distyly in Mussaenda parviflora (Rubiaceae). Plant Species Biology 14(3): 217-227.
Naka KI, Rushton WAH. 1966. S-potentials from colour units in the retina of fish (Cyprinidae). The Journal of Physiology 185(3): 536-555.
Oberrath R, Böhning Gaese K. 1999. Floral color change and the attraction of insect pollinators in lungwort ( Pulmonaria collina ). Oecologia 121(3): 383-391.
Ödeen A, Håstad O, Alström P. 2011. Evolution of ultraviolet vision in the largest avian radiation - the passerines. BMC Evolutionary Biology 11(1): 313-313.
Ohashi K, Makino T, Arikawa K, Kudo G. 2015. Floral colour change in the eyes of pollinators: testing possible constraints and correlated evolution. Functional Ecology 29(9): 1144-1155.
Ômura H, Honda K. 2005. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 142(4): 588-596.
Peitsch D, Fietz A, Hertel H, de Souza J, Ventura D, Menzel R. 1992a. The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of comparative physiology. A. 170(1): 23-40.
Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R. 1992b. The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A 170(1): 23-40.
Peng D-L, Zhang Z-Q, Xu B, Li Z-M, Sun H. 2012. Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alpine Botany 122(2): 65-73.
Primack RB. 1978. Variability in New Zealand montane and alpine pollinator assemblages. New Zealand Journal of Ecology 1: 66-73.
Primack RB. 1983. Insect pollination in the New Zealand mountain flora. New Zealand journal of botany 21(3): 317-333.
Raine NE, Chittka L. 2005. Colour preferences in relation to the foraging performance and fitness of the bumblebee Bombus terrestris. Uludag Bee Journal 5(4): 145-150.
Rangaiah K, Raju AJS, Rao SP. 2004. Passerine bird-pollination in the Indian coral tree, Erythrina variegata var. orientalis (Fabaceae). CURRENT SCIENCE 87(6): 736-739.
Renoult JP, Valido A, Jordano P, Schaefer HM. 2014. Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytologist 201(2): 678-686.
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3(2): 217-223.
Revell LJ, Johnson MA, Schulte JA, Kolbe JJ, Losos JB, Schwenk K. 2007. A PHYLOGENETIC TEST FOR ADAPTIVE CONVERGENCE IN ROCK-DWELLING LIZARDS. Evolution 61(12): 2898-2912.
Reverté S, Retana J, Gómez JM, Bosch J. 2016. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Annals of botany 118(2): 249-257.
Rodríguez-Gironés M, Santamaría L. 2004. Why are so many bird flowers red? PLoS Biology 2(10): e350.
Sargent RD, Ackerly DD. 2008. Plant–pollinator interactions and the assembly of plant communities. Trends in ecology & evolution (Regular ed. Print) 23(3): 123-130.
Shrestha M, Dyer A, Bhattarai P, Burd M, Shefferson R. 2014. Flower colour and phylogeny along an altitudinal gradient in the Himalayas of Nepal. Journal of Ecology 102(1): 126-135.
Shrestha M, Dyer A, Boyd Gerny S, Wong BBM, Burd M. 2013. Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytologist 198(1): 301-310.
Shrestha M, Lunau K, Dorin A, Schulze B, Bischoff M, Burd M, Dyer AG, Rennenberg H. 2016. Floral colours in a world without birds and bees: the plants of Macquarie Island. Plant Biology 18(5): 842-850.
Spaethe J, Tautz J, Chittka L. 2001. Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proceedings of the National Academy of Sciences, USA 98(7): 3898-3903.
Stournaras K, Lo E, Böhning Gaese K, Cazetta E, Matthias Dehling D, Schleuning M, Stoddard M, Donoghue M, Prum R, Martin Schaefer H. 2013. How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist 198(2): 617-629.
Streinzer M, Streinzer, Paulus HF, Spaethe J. 2009. Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. Journal of Experimental Biology 212(9): 1365-1370.
Thapa VK. 2000. An inventory of Nepal insect. Volumn III (Hemiptera, Hymenoptera, Coleoptera & Diptera).
. Nepal, Kathmandu: IUCN.
Totland O, Nielsen A, Bjerknes AL, Ohlson M. 2006. Effects of an exotic plant and habitat disturbance on pollinator visitation and reproduction in a boreal forest herb. American Journal of Botany 93(6): 868-873.
Trøjelsgaard K, Báez M, Espadaler X, Nogales M, Oromí P, La Roche F, Olesen JM. 2013. Island biogeography of mutualistic interaction networks. Journal of Biogeography 40(11): 2020-2031.
van der Kooi CJ, Pen I, Staal M, Stavenga DG, Elzenga JTM, Dafni A. 2016. Competition for pollinators and intra-communal spectral dissimilarity of flowers. Plant Biology 18(1): 56-62.
Villagra PE. 1995. Temperature effects on germination of Prosopis argentina and P. alpataco (Fabaceae, Mimosoideae) Master, Instituto Argentino de Investigaciones de las Zonas Aridas Mendoza.
Warren SD, Harper KT, Booth GM. 1988. Elevational distribution of insect pollinators. The American Midland Naturalist 120(2): 325-330.
Waser NM. 1978. Interspecific pollen transfer and competition between co occurring plant species. Oecologia 1978(2): 223-236.
Williams PH, Ito M, Matsumura T, Kudo I. 2010. The bumblebees of the Nepal Himalaya (Hymenoptera : Apidae). Insecta Matsumurana 66: 115-151.
Williamson J, Harrison S. 2002. Biotic and abiotic limits to the spread of exotic revegetation species. Ecological Applications 12(1): 40-51.
Wilson P, Stine M. 1996. Floral constancy in bumble bees: handling efficiency or perceptual conditioning? Oecologia 106(4): 493-499.
Zanne A, Tank D, Cornwell W, Eastman J, Smith S, FitzJohn R, McGlinn D, Omeara B, Moles A, Reich P, et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506(7486): 89-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71353-
dc.description.abstract台灣原生被子植物接近4 千種,推測至少2/3 以上靠昆蟲傳粉,而花色在昆蟲對植物的偵測上扮演重要角色。由於台灣低中高海拔截然不同的生態環境會導致傳粉者在組成上有較大差異,而不同傳粉者的先天偏好會對當地植物的花色組成有潛在影響。同時,傳粉者介導的競爭機制亦會影響被子植物的花色。然而實際對台灣原生被子植物的花色研究卻十分有限。本研究大規模採集了台灣低,中,高海拔合共727 種原生被子植物的花色反射光譜,并利用蜜蜂視覺空間模型和蜜蜂視覺識別曲線擬合模型進行分析。我們發現台灣低海拔地區(<900 m)的物種相較於中(1500-2200 m),高(> 2850 m)海拔地區,擁有更高的花色多樣性,低海拔物種在蜜蜂視覺空間模型中佔據的最小凸多邊形(mcp)面積為0.546,大於中,高海拔物種花色所佔的面積(0.270 和0.304)。並且一部分只出現在低海拔的花色,其物種的潛在傳粉者在中,高海拔少有分佈。藉此可以推測由海拔上升介導的傳粉者多樣性下降,會對不同海拔的花色組成產生影響。我們亦發現台灣中,高海拔地區的花色整體上和蜜蜂視覺識別能力更為吻合,表明蜂類昆蟲對於中,高海拔的花色組成具有更重要的影響,亦是中高海拔被子植物最重要的傳粉者之一。此外,高海拔物種的花色在蜜蜂視覺空間模型中趨於分散(p=0.060),而中,低海拔物種的花色並無分散趨勢
(p=0.599, p=0.040)。物種間親緣關係指數(Mean Pair-wise Phylogenetic Distance)分析的結果表明,高海拔物種的系統發育結構趨於聚集,並且台灣原生被子植物的花色具有較弱的系統發育信號(Phylogenetic signal, Blomberg’s K)。我們由此推測台灣高海拔物種的花色趨於分散,可能是親緣關係較近的植物對於競爭有限傳粉者的
適應性結果。本研究首次站在傳粉者視覺對台灣原生被子植物的花色多樣性進行探討,對未來有關被子植物花色演化及植物-傳粉者交互作用的研究有較大助益。
zh_TW
dc.description.abstractA Classic view asserted that floral color assembly could be shaped by the pollinator preference. However, the floral color assembly could be alternatively explained by
competition for pollinators they shared.
Here, we analyzed the floral color assembly from low altitude to alpine region in a subtropical island Taiwan, through the bee perceptual color space, in an effort to evaluate whether these two models could compatibly account for the floral color assembly along altitudes. We found that the diversity of the floral colors in middle (1500-2200 m) and high altitudes (over 2850 m) were significantly lower than that of low altitude regions (below 900 m), which could be partly explained by the declined abundance of pollinators with increasing altitudes. Moreover, the chromatic signals of the alpine species most fit with the discrimination ability of bees’ vision, which suggested that bees might be the most important pollinator in the subtropical alpine regions.
In addition, the alpine species exhibited larger divergence of the floral colors than expected by chance, but no similar trends were observed in low and middle altitude. When considering phylogenetic structure, sympatric alpine species tend to be phylogenetically related (clustering) but floral colors of related species tend to be diverse (weak phylogenetic signal). This suggested that the over-dispersion of floral color among related alpine species may be the result of their competition for limited pollinators.
Overall, our results first demonstrated that the floral color assembly along altitudes in a subtropical island could respectively adapted to the pollinator preference model and competition mode.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:59:16Z (GMT). No. of bitstreams: 1
ntu-107-R04b21034-1.pdf: 3509202 bytes, checksum: 5b8a049136d5414cfae823810d2d90eb (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents
1. Introduction 1
2. Materials and Methods 9
2.1. Sample sites and species collection 9
2.2. Measurement of flower spectral reflectance 10
2.3. Analysis of floral spectral reflectance properties 11
2.4. Calculation of bee color space 13
2.5. Phylogenetic tree 15
2.6. Comparison of floral color diversity between altitude regions 16
2.7. Analysis of floral colors assembly of different altitude regions 17
2.8. Analysis of phylogenetic structure of species in different altitude regions 18
2.9. Phylogenetic signal for the floral colors in Taiwan 19
2.10. Comparison for the floral colors of Taiwanese species and other floras 20
3. Results 21
3.1. (i) Do floral color diversity of the native species decline with the increasing altitudes? 21
3.1.1. Comparison of floral color diversity between three altitude regions 21
3.2. (ii) Do floral colors exhibit higher degree of over-dispersion in alpine region than that of low and middle altitudes? 26
3.2.1. Floral color assembly of the species in three altitude regions 26
3.3. (iii) Which ecological process would principally explain for the over-dispersion pattern for the floral colors in alpine region? 28
3.3.1. Phylogenetic structure of the species in three altitude regions 28
3.3.2. Phylogenetic signal for the floral colors in Taiwan 29
3.3.3. Comparison for the floral colors of Taiwanese species and other floras 31
4. Discussion 36
4.1. Reduction in pollinator faunas partly explained the decline in floral color diversity with increasing altitudes. 36
4.2. Abiotic factors could also influence the floral color diversity along altitudes. 38
4.3. Floral color over-dispersion for the alpine species was the result of character displacement. 40
4.4. Island-induced reduction in pollinator diversity resulted in the limited floral color diversity. 44
4.5. White flowers may be well adapted to the island ecosystem, as they could be pollinated by many pollinator faunas. 46
References 49
Supplementary 56




List of Figures
Figure 1. Patterns of floral color distribution on a phylogeny……………….…………8
Figure 2. Example reflectance spectrum…………………………………...…………...12
Figure 3. Bee color hexagon of different altitude regions ………………..……………24
Figure 4. Inflection points distribution of different altitude regions……………………25
Figure 5. Bee color hexagon of different geographic regions…………………….…….33
Figure 6. Inflection points distribution of different geographic regions…………...……34

List of Tables
Table 1. Comparison of MAD values among different altitude regions...…………..…..26
Table 2. Mean pair-wise color distance analysis for different altitude regions…….…...27
Table 3. Phylogenetic structure of different altitude regions……...………………..…...29
Table 4. Phylogenetic signal for the floral color in Taiwan………………...……..…….30
Table 5. Comparison of MAD values among different geographic regions ……......…...35
dc.language.isoen
dc.title傳粉者偏好及競爭對台灣不同海拔植物花色組成的影響zh_TW
dc.titlePollinator preference and pollinator-mediated competition united to shape the floral color assembly along altitudes in Taiwanen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.coadvisor楊恩誠(En-Cheng Yang)
dc.contributor.oralexamcommittee許再文(Tsai-Wen Hsu),黃俊霖(Chun-Lin Huang)
dc.subject.keyword傳粉者偏好;競爭傳粉者;花色組成;反射光譜;蜜蜂視覺;系統發育結構;系統發育信號,zh_TW
dc.subject.keywordPollinator preference;Pollinator-mediated competition;Floral color assembly;Reflectance spectra;Bee color vision;Phylogenetic structure;Phylogenetic signal,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201900565
dc.rights.note有償授權
dc.date.accepted2019-02-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:生命科學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
3.43 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved