Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71352
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張陸滿 | |
dc.contributor.author | Ching-Yang Kao | en |
dc.contributor.author | 高慶揚 | zh_TW |
dc.date.accessioned | 2021-06-17T05:59:15Z | - |
dc.date.available | 2020-02-19 | |
dc.date.copyright | 2019-02-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-02-14 | |
dc.identifier.citation | 英文參考文獻
Bartholomew, Calvin H %J Applied Catalysis A: General. 2001. 'Mechanisms of catalyst deactivation', 212: 17-60. Beck, J. S., J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth, and S. E. Schramm. 1994. 'Molecular or Supramolecular Templating: Defining the Role of Surfactant Chemistry in the Formation of Microporous and Mesoporous Molecular Sieves', Chemistry of Materials, 6: 1816-21. Beck, Jeffrey Scott, JC Vartuli, W Jelal Roth, ME Leonowicz, CT Kresge, KD Schmitt, CTW Chu, D Hm Olson, EW Sheppard, and SB %J Journal of the American Chemical Society McCullen. 1992. 'A new family of mesoporous molecular sieves prepared with liquid crystal templates', 114: 10834-43. Beyerlein, RA, C Choifeng, JB Hall, BJ Huggins, and GJ %J FLUID CATALYTIC CRACKING III Ray. 1994. 'Investigation of mesopore formation-evolution of nonframework aluminum species during hydrothermal dealumination of ultrastable y-catalysts', 571: 81-97. Bottero, J. Y., K. Khatib, F. Thomas, K. Jucker, J. L. Bersillon, and J. Mallevialle. 1994. 'Adsorption of atrazine onto zeolites and organoclays, in the presence of background organics', Water Research, 28: 483-90. Calleja, G., J. Pau, and J. A. Calles. 1998. 'Pure and Multicomponent Adsorption Equilibrium of Carbon Dioxide, Ethylene, and Propane on ZSM-5 Zeolites with Different Si/Al Ratios', Journal of Chemical & Engineering Data, 43: 994-1003. Carrott, M. M. L. R., A. J. E. Candeias, P. J. M. Carrott, and K. K. Unger. 1999. 'Evaluation of the stability of pure silica MCM-41 toward water vapor', Langmuir, 15. Cartlidge, S, H-U Nissen, and R %J Zeolites Wessicken. 1989. 'Ternary mesoporous structure of ultrastable zeolite CSZ-1', 9: 346-49. Cauqui, M. A., and J. M. Rodríguez-Izquierdo. 1992. 'Application of the sol-gel methods to catalyst preparation', Journal of Non-Crystalline Solids, 147-148: 724-38. Chandak, MV, and YS %J Environmental technology Lin. 1998. 'Hydrophobic zeolites as adsorbents for removal of volatile organic compounds from air', 19: 941-48. Chang, Feng-Tang, Yu-Chih Lin, Hsunling Bai, and Bau-Shei Pei. 2003. 'Adsorption and Desorption Characteristics of Semiconductor Volatile Organic Compounds on the Thermal Swing Honeycomb Zeolite Concentrator', Journal of the Air & Waste Management Association, 53: 1384-90. Chang, Hsiao-Lan, Chang-Min Chun, Ilhan A Aksay, Wei-Heng %J Industrial Shih, and engineering chemistry research. 1999. 'Conversion of fly ash into mesoporous aluminosilicate', 38: 973-77. Chen, Cong-Yan, Hong-Xin Li, and Mark E. Davis. 1993. 'Studies on mesoporous materials: I. Synthesis and characterization of MCM-41', Microporous Materials, 2: 17-26. Chintawar, Prashant S., and Howard L. Greene. 1997. 'Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites', Applied Catalysis B, Environmental, 14: 37-47. Choi, Jeongyun, Joon-Hee Jeong, and Jinwook %J Chemical engineering journal Chung. 2013. 'Degradation of acetone and isopropylalcohol in electronic wastewater using Fe-and Al-immobilized catalysts', 218: 260-66. Clausse, Benoı̂t, Bénédicte Garrot, Cédric Cornier, Christian Paulin, Marie-Hélène Simonot-Grange, Faddy %J Microporous Boutros, and mesoporous materials. 1998. 'Adsorption of chlorinated volatile organic compounds on hydrophobic faujasite: correlation between the thermodynamic and kinetic properties and the prediction of air cleaning', 25: 169-77. Corma, Avelino. 1997. 'From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis', Chemical reviews, 97: 2373. Davis, ME, and SL %J Zeolites Burkett. 1995. 'Towards the rational design and synthesis of microporous and mesoporous silica-containing materials', 12: 33. Díaz, Eva, Salvador Ordóñez, Aurelio Vega, and José Coca. 2004. 'Characterization of Co, Fe and Mn-exchanged zeolites by inverse gas chromatography', Journal of Chromatography A, 1049: 161-69. El Brihi, T, J‐N Jaubert, D Barth, and L %J Environmental technology Perrin. 2003. 'VOCs Isotherms on day zeolite by static and dynamic methods: experiments and modelling', 24: 1201-10. Förster, Stephan, and Thomas Plantenberg. 2002. 'From self-organizing polymers to nanohybrid and biomaterials', Angewandte Chemie (International ed. in English), 41: 689. Farrell, James, Chris Manspeaker, and Jing Luo. 2003. 'Understanding competitive adsorption of water and trichloroethylene in a high-silica Y zeolite', Microporous and Mesoporous Materials, 59: 205-14. Gislon, P., S. Galli, and G. Monteleone. 2013. 'Siloxanes removal from biogas by high surface area adsorbents', Waste Management, 33: 2687-93. Hussey, F, and A Gupta. 1996. 'Removal of VOCs from industrial process exhaust with carbon and zeolite adsorbents.' In.: Air & Waste Management Association, Pittsburgh, PA (United States). Ichiura, H, M Nozaki, T Kitaoka, and H %J Advances in Environmental Research Tanaka. 2003. 'Influence of uniformity of zeolite sheets prepared using a papermaking technique on VOC adsorptivity', 7: 975-79. Kang, Sy-Yuan, Hsiao-Hsin Tsai, Nhat-Thien Nguyen, Chang-Tang Chang, Chao-Heng %J Journal of nanoscience Tseng, and nanotechnology. 2016. 'Treatment of Volatile Organic Compounds with Mesoporous Materials Prepared from Calcium Fluoride Sludge', 16: 1961-66. Kao, Ching-Yang, Min-Fa Lin, Nhat-Thien Nguyen, Hsiao-Hsin Tsai, Luh-Maan Chang, Po-Han Chen, Chang-Tang %J Journal of nanoscience Chang, and nanotechnology. 2018. 'Hexamethyldisilazane Removal with Mesoporous Materials Prepared from Calcium Fluoride Sludge', 18: 3314-19. Kim, Sang Chai, and Wang Geun %J Journal of hazardous materials Shim. 2008. 'Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene', 154: 310-16. Kruk, M, M Jaroniec, and A %J The Journal of Physical Chemistry B Sayari. 1997a. 'Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes', 101: 583-89. Kruk, M., M. Jaroniec, and A. Sayari. 1997b. 'Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements', Langmuir, 13: 6267-73. Kruk, Michal, Mietek Jaroniec, Yasuhiro Sakamoto, Osamu Terasaki, Ryong Ryoo, and Chang Hyun Ko. 2000. 'Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction', The Journal of Physical Chemistry B, 104: 292-301. Laskowski, Łukasz, Magdalena Laskowska, Maria Bałanda, Magalena Fitta, Jadwiga Kwiatkowska, Kazimierz Dziliński, Agnieszka %J Microporous Karczmarska, and Mesoporous Materials. 2014. 'Mesoporous silica SBA-15 functionalized by nickel–phosphonic units: Raman and magnetic analysis', 200: 253-59. Li, Baoshan, Kai Wu, Taohong Yuan, Chunying Han, Junqing Xu, Xinmei %J Microporous Pang, and Mesoporous Materials. 2012. 'Synthesis, characterization and catalytic performance of high iron content mesoporous Fe-MCM-41', 151: 277-81. Li, Shi, Shu Li, and Bei Li. 1997. 'Reactions of organic exhausts and the thermal stability of catalysts', Reaction Kinetics and Catalysis Letters, 62: 89-95. Lin, Hong-Ping, Yah-Ru Cheng, Chung-Rong Lin, Feng-Yin Li, Chang-Lin Chen, She-Tin Wong, Soofin Cheng, Shang-Bin Liu, Ben-Zu Wan, Chung-Yuan Mou, Chin-Yuan Tang, and Ching-Yen Lin. 1999. 'The Synthesis and Application of the Mesoporous Molecular Sieves MCM-41 - A Review', Journal of the Chinese Chemical Society, 46: 495-507. Lin, Yu-Chih, Hsunling Bai, and Chung-Liang Chang. 2005. 'Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal', Journal of the Air & Waste Management Association, 55: 834-40. Liu, PY, and FT %J Environ. Ind Chang. 2004. 'Fluidized-bed adsorption system for VOCs treatment', 27: 10-13. Majchrzak-Kucęba, Izabela, and Wojciech Nowak. 2011. 'Characterization of MCM-41 mesoporous materials derived from polish fly ashes', International Journal of Mineral Processing, 101: 100-11. Mitsuma, Yoichi, Yasutaka Ota, and Tsutomu %J Journal of chemical engineering of Japan Hirose. 1998. 'Performance of thermal swing honeycomb VOC concentrators', Journal of Chemical engineering Jpn, 31: 482-84. Mokaya, Robert. 2000. 'Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41', The Journal of Physical Chemistry B, 104: 8279-86. Monneyron, Pierre, Marie-Helene Manero, Jean-Noel %J Environmental science Foussard, and technology. 2003. 'Measurement and modeling of single-and multi-component adsorption equilibria of VOC on high-silica zeolites', 37: 2410-14. Monnier, A., F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B. F. Chmelka. 1993. 'Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures', Science (New York, N.Y.), 261: 1299. Montanari, Tania, Elisabetta Finocchio, Irene Bozzano, Gilberto Garuti, Andrea Giordano, Chiara Pistarino, and Guido %J Chemical Engineering Journal Busca. 2010. 'Purification of landfill biogases from siloxanes by adsorption: a study of silica and 13X zeolite adsorbents on hexamethylcyclotrisiloxane separation', 165: 859-63. Moretti, Edward C, and Nikhiles %J Chemical Engineering Progress Mukhopadhyay. 1993. 'VOC control: Current practices and future trends', 89. Morishige, K., H. Fujii, M. Uga, and D. Kinukawa. 1997. 'Capillary Critical Point of Argon, Nitrogen, Oxygen, Ethylene, and Carbon Dioxide in MCM-41', Langmuir, 13: 3494-98. Nguyen, C, DD %J Adsorption Science Do, and Technology. 1998. 'Adsorption of benzene and ethanol on activated carbon, MCM-41 and zeolite Y', 16: 439-52. Oshita, Kazuyuki, Keigo Omori, Masaki Takaoka, Tadao %J Energy conversion Mizuno, and management. 2014. 'Removal of siloxanes in sewage sludge by thermal treatment with gas stripping', 81: 290-97. Pérez-Esteve, Édgar, Ana Fuentes, Carmen Coll, Carolina Acosta, Andrea Bernardos, Pedro Amorós, María D Marcos, Félix Sancenón, Ramón Martínez-Máñez, José M %J Microporous Barat, and Mesoporous Materials. 2015. 'Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles', 202: 124-32. Park, Sang-Eon, Jong-San Chang, Young Hwang, Dae Kim, Sung Jhung, and Jin Hwang. 2004. 'Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials', Catalysis Surveys from Asia, 8: 91-110. Pinna, Francesco. 1998. 'Supported metal catalysts preparation', Catalysis Today, 41: 129-37. Run, Mingtao, Sizhu Wu, and Gang Wu. 2004. 'Ultrasonic synthesis of mesoporous molecular sieve', Microporous and Mesoporous Materials, 74: 37-47. Ruthven, Douglas M. 1984. Principles of adsorption processes (Wiley: New York). Ruthven, Douglas M., and Bal K. Kaul. 1993. 'Adsorption of aromatic hydrocarbons in NaX zeolite. 2. Kinetics', Industrial & Engineering Chemistry Research, 32: 2053-57. Ryoo, Ryong, and Shinae Jun. 1997. 'Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process', The Journal of Physical Chemistry B, 101: 317-20. Ryoo, Ryong, and Ji Man Kim. 1995. 'Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium', Journal of the Chemical Society, Chemical Communications: 711-12. Salama, Tarek M, Ibraheem O Ali, Hosni A %J Microporous Gumaa, and Mesoporous Materials. 2008. 'Synthesis and characterization of Cu (I)–salen complex immobilized aluminosilicate MCM-41', 113: 90-98. Sayari, A., P. Liu, M. Kruk, and M. Jaroniec. 1997. 'Characterization of Large-Pore MCM-41 Molecular Sieves Obtained via Hydrothermal Restructuring', Chemistry of Materials, 9: 2499-506. Sayari, Abdelhamid. 1996. 'Periodic mesoporous materials: synthesis, characterization and potential applications.' in, Studies in Surface Science and Catalysis (Elsevier). Schweigkofler, Martin, and Reinhard Niessner. 2001. 'Removal of siloxanes in biogases', Journal of Hazardous Materials, 83: 183-96. Selvaraj, M, PK Sinha, K Lee, I Ahn, A Pandurangan, TG %J Microporous Lee, and Mesoporous Materials. 2005. 'Synthesis and characterization of Mn–MCM-41and Zr–Mn-MCM-41', 78: 139-49. Serrano, David P, Guillermo Calleja, Juan A Botas, Francisco J %J Industrial Gutierrez, and engineering chemistry research. 2004. 'Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal', 43: 7010-18. Siriwardane, Ranjani V, Ming-Shing Shen, Edward P %J Energy Fisher, and Fuels. 2003. 'Adsorption of CO2, N2, and O2 on natural zeolites', 17: 571-76. Smirniotis, P. G., and W. Zhang. 1996. 'Effect of the Si/Al ratio and of the zeolite structure on the performance of dealuminated zeolites for the reforming of hydrocarbon mixtures', Industrial and Engineering Chemistry Research, 35: 3055-66. Sonwane, C. G., and S. K. Bhatia. 1999. 'Analysis of Criticality and Isotherm Reversibility in Regular Mesoporous Materials', Langmuir, 15: 5347-54. Stenzel, Mark H %J Chemical Engineering Progress. 1993. 'Remove organics by activated carbon adsorption', 89. Swanson, Meghan E., Howard L. Greene, and Syed Qutubuddin. 2004. 'Reactive sorption of chlorinated VOCs on ZSM-5 zeolites at ambient and elevated temperatures', Applied Catalysis B, Environmental, 52: 91-108. Treybal, Robert Ewald. 1980. Mass-transfer operations (McGraw-Hill: New York). Tsai, Wen‐Tien, Ching‐Yuan Chang, and Horng‐Chia Lee. 1996. 'Adsorption of organic vapors containing N,N‐dimethylformamide on activated carbon and hydrophobic zeolite', Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology, 31: 995-1008. Wang, Chen Yeh, and Hsunling %J Catalysis today Bai. 2011. 'Aerosol processing of mesoporous silica supported bimetallic catalysts for low temperature acetone oxidation', 174: 70-78. Wang, GuangJian, Yuran Wang, Yiwu Liu, Zhengwang Liu, YaJie Guo, Guangqing Liu, Zhengxing Yang, MingXia Xu, and Lei %J Applied Clay Science Wang. 2009. 'Synthesis of highly regular mesoporous Al-MCM-41 from metakaolin', 44: 185-88. Ward, D. A., and E. I. Ko. 1995. 'Preparing catalytic materials by the sol-gel method', Industrial and Engineering Chemistry Research, 34. Weber, G, O Bertrand, E Fromont, S Bourg, F Bouvier, D Bissinger, and MH %J Journal de chimie physique Simonot-Grange. 1996. 'TCE adsorption on hydrophobic Y and MFI zeolites. Possibilities of using such materials for solvent recovery', 93: 1412-25. Wu, C. G., and T. Bein. 1994. 'Conducting carbon wires in ordered, nanometer-sized channels', Science, 266: 1013-15. Yen, Shui‐Hway, Fu‐Tien Jeng, Jiun‐Horng %J Journal of Environmental Science Tsai, and Health Part A. 1997. 'Adsorption of methyl‐ethyl ketone vapor onto zeolites', 32: 2087-100. Zhang, R, and JA %J Applied Catalysis A: General Schwarz. 1992. 'Design of inhomogeneous metal distributions within catalyst particles', 91: 57-65. Zhao, XS, Q Ma, GQ %J Energy Lu, and Fuels. 1998. 'VOC removal: comparison of MCM-41 with hydrophobic zeolites and activated carbon', 12: 1051-54. Zheng, Chenghang, Xinbo Zhu, Xiang Gao, Lu Liu, Qianyun Chang, Zhongyang Luo, and Kefa Cen. 2014. 'Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor', Journal of Industrial and Engineering Chemistry, 20: 2761-68. 中文參考文獻 林怡君,「液相法製造程序對中孔洞沸石型吸附材特性及其丙酮吸附量影響之研究」,國立交通大學碩士論文,2006,p: 15。 林雨蓉,「利用鐵奈米鈦管觸媒處理揮發性有機化合物之研究」,國立宜蘭大學碩士論文,2013,p: 60~61。 林麗娟,「X光繞射原理及其應用」,X光材料分析技術與應用專題,1994,p: 101~104。 阮日天,「從廢玻璃製備中孔洞材料進行揮發性有機物處理之研究」,國立宜蘭大學碩士論文,2017,p: 24、27~28。 洪錦德,「氣膠法合成之中孔洞矽質材料特性分析及其空氣污染應用」,國立交通大學博士論文,2009,p: 8、39-42。 許朝翔,「以粒狀觸媒氧化甲苯之研究」,國立中山大學碩士論文,2007,p: 2-26 ~ 2-28、2-35。 陳良誌,「以模場生物滴濾塔處理含異辛醇排氣之操作性能研究」,國立中山大學碩士論文,2000,p: 9。 黃昱源、吳嘉文,「無用之用的奈米孔洞材料」,科學發展,2015年9月513期,p: 16~21。 黃皓瑋,「使用孔洞複合材料對於廢氣中 HMDS 和丙酮處理之研究」,國立宜蘭大學碩士論文,2018,p: 19、20、71。 彭筱婷,「以生物濾床處理排氣中乙酸甲氧基異丙酯(PGMEA)之操作性能研究」,國立中山大學碩士論文,2005,p: 7~9。 網路資料1:「2017 年台灣半導體產值成長 3.2%,10 奈米製程帶動下半年產值回升」,作者:Atkinson,發布日期:2017年06月01日11:30。2018/10/30取自:https://finance.technews.tw/2017/06/01/semiconductor-taiwan-2017/。 網路資料2:「Contact Taiwan InvesTaiwan」,2018/9/30取自:https://www.contacttaiwan.tw/company/docdetail.aspx?uid=452&pid=451&docid=110&lang=1。 網路資料3:「半導體製程及原理」,2018/10/30 取自:http://www2.nsysu.edu.tw/IEE/lou/elec/web/process/semi.htm。 網路資料4:「案例介紹,氟化鈣污泥再利用」,2018/11/1 取自https://riw.tgpf.org.tw/ReadFile/?p=ProductsHistory&n=1%E6%A1%88%E4%BE%8B_%E6%B0%9F%E5%8C%96%E9%88%A3%E6%B1%A1%E6%B3%A5%E5%86%8D%E5%88%A9%E7%94%A8.pdf。 網路資料5:「失控的高科技廢物 引爆環境危機」,天下雜誌,2015/3/17。2018/10/26取自:https://www.cw.com.tw/article/article.action?id=5065630。 網路資料6:「沸石轉輪濃縮+焚化處理系統」,傑智環境科技。2018/11/26取自:http://www.jgok.net/edm/JGrcto.pdf。 網路資料7:「Heat wheel」,Seibu Giken。2018/11/26取自:http://seibu-giken.co.jp/english/our-products/heat-wheel。 網路資料8:「VOCs廢氣處理系統」,華懋科技股份有限公司。2018/11/26取自:http://www.dtech-group.com/product_show.php?show=10。 網路資料9:2018/11/26取自:http://thuir.thu.edu.tw/retrieve/8203/093THU00518011-001.pdf,p: 3~4。 網路資料10:「孔洞材料與其應用領域」,材料世界網,刊登日期:2017/1/5。2018/12/2取自:https://www.materialsnet.com.tw/DocView.aspx?id=24804。 網路資料11:「Prepapration, Applications and Structural Determination of Nano-porous Materials」PPT,作者:鄭淑芬,國立台灣大學,p: 5。2018/12/1取自:http://www.phys.sinica.edu.tw/TIGP-NANO/Course/2011_Spring/classnotes/ACM_Nanoporous%20Materials-20110408.pdf。 網路資料12:「BET试验中常见的6种吸附等温线和5种回滞环」,2018/11/27取自:http://www.antpedia.com/news/35/n-1463435.html。 網路資料13:「XRF(X-射線螢光分析)」,EAG Laboratories。11/10/2018取自: http://www.eaglabs.com.tw/xrf.html。 網路資料14:「儀器分析」,梁哲豪,p: 4、44-46頁,2019/1/1取自:http://www.seafood.nkmu.edu.tw/readimage.php?file=file/7509%E8%B3%87%E6%96%99%E5%A4%BE/%E7%A0%94%E7%A9%B6%E6%89%80%E4%B8%8A%E8%AA%B2%E8%B3%87%E6%96%99/%E7%AC%AC%E5%85%AD%E7%AB%A0%E7%B4%85%E5%A4%96%E7%B7%9A%E5%85%89%E8%AD%9C%E6%B3%95.pdf。 趙怡欽,許紘瑋,「觸媒燃燒」,燃燒季刊,2002,Vol. 11,p: 11~16。 雷敏宏,「觸媒的本領」,科學發展,2002,352期。 蔣本基、楊萬發、張怡怡,「工業區污水處理廠污泥減量及資源再利用」,工業污染防治,2002,第86期,p: 125~140。 蔡孝鑫,「利用廢棄氟化鈣研製中孔洞材料與觸媒處理含矽烷光阻劑與丙酮之研究」,國立宜蘭大學碩士論文,2015,p: 20~26、111。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71352 | - |
dc.description.abstract | 半導體工廠的污染產出無可避免,尤其在日益提升的環境保護觀念之下,改善及降低污染顯得更急迫更重要。倘若能夠利用工廠生產過程中所產生的廢棄物,加工處理後當作製程廢氣的過濾裝置,那無疑一舉兩得,使廢物變黃金,兩邊同時減廢,若還能兼具節能的效果,那將會是極為值得研究的課題。
本研究利用半導體工廠廢水廠產出的氟化鈣污泥,製成選擇性中孔洞材料與觸媒,將之置入製程排氣管道中吸附HMDS及當作廢氣焚化爐的催化劑,最終將可達成上述成效,解決半導體工廠廠務端的長期困擾。 本研究是以溶膠-凝膠法來製備奈米級選擇性中孔洞材料,由於含有CaF2,簡稱為CF-MCM,此選擇性中孔洞材料用來專門吸附HMDS及silane等高沸點VOCs(Volatile Organic Compounds)。另在製備CF-MCM的過程中加入硝酸鐵製成觸媒,簡稱為Fe-CF-MCM,用以當作焚化爐內的催化劑,不但可以降低焚化爐的燃燒溫度,還同時提升VOCs的裂解效率。 新製材料在使用前必然需要妥予實驗其適用性。取坊間最具代表性的中孔洞材料MCM-41當作比對標的,用來比較新製材料的物化特性。並架設VOCs及HMDS之連續反應實驗系統來測試新製材料的吸附功能及適用性。CF-MCM材料需具備高比表面積與高孔洞體積等特性,也需要具有良好的吸附HMDS等高沸點VOCs的能力。Fe-CF-MCM觸媒由於本身也是孔洞性材料,因此同樣必須檢視其特性,並做壽命測試。 本研究預期的效果是消納廢棄物、降低擾人的高沸點VOCs處理問題、降低沸石轉輪與VOCs焚化爐的維修負擔、同時又能達到節能效果。完成上述實驗後還必須在工廠實地做小型測試,驗證可行之後兩種新材料才能真正上線使用。 | zh_TW |
dc.description.abstract | Generation of chemical wastes in semiconductor factories is inevitable. Nowadays, the circumstance of recycling chimcal wastes as reusable resources is increasing as time goes on. It becomes more urgent and more important to reduce the chemical wastes as well as mitigating the potential environment pollution generated from the wastes. However, if one could take the waste generated from the production activities of the factory and recycle it as reusable resourse use, it could not only reduce the waste but also may cut down the energy consuming.
To explore the potentials, a research project was conducted to recycle the filtering waste into the usable material for processing exhaust air. In this research, the calcium fluoride sludge waste was recycled through designated selective mesoporous materials and catalysts. The sludge was generated from a wastewater plant of a semiconductor factory. The newly fabricated materials were placed in the front of Zeolite Rotor Concentrator to absorb HMDS(Hexamethyldisilazane), and the catalysts was installed inside the VOCs(Volatile Organic Compounds, VOCs)incinerator, such as RCO (Regenerative Catalytic Oxidizers) or RTO (Regenerative Thermal Oxidizers) to reduce energy consuming. To assure their suitability before use, the new made materials must be properly tested. The most common mesoporous material MCM-41 was used as the comparison standard. And then, their physicochemical properties of the new materials were compared. A simulation device for HMDS was set and VOCs absorption efficiency experiment was performed. The selective nanometer-sized porous material was made by Sol-gel solution. The mew made material contains CaF2, therefore is called “CF-MCM”. It would be used to specifically adsorb HMDS. Moreover, in the process of preparing CF-MCM, Iron nitrate nonhydrate(Fe(NO3)3·9H2O) was added and it became a catalyst, which is referred to as Fe-CF-MCM. It was used as a catalyst in the VOCs incinerator, which not only reduced the combustion temperature of the incinerator, but also enhanced the VOCs cracking effect. CF-MCM materials need to have physicochemical properties of porous, high specific surface area and uniform pore size distribution, and also have good ability to adsorb high-boiling VOCs such as HMDS. Since the Fe-CF-MCM catalyst is also a porous material, it is also necessary to examine its characteristics and conduct a life test to examine its usability. The research results demonstrate that the long-term troubles of air filtration waste can be resolved. It not only reduces the waste, but also, it may lower the maintenance loading of VOCs treatment system and decrease the usage of energy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:15Z (GMT). No. of bitstreams: 1 ntu-108-D99521016-1.pdf: 5818006 bytes, checksum: 440d1e51e9853d184a15b96961d02d55 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 I 致謝 II ABSTRACT III 中文摘要 V 目錄 VI 圖目錄 IX 表目錄 XIV 英文縮寫 XVI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範疇 2 1.4 研究限制 3 1.5 論文架構 4 第二章 文獻探討 5 2.1 台灣半導體產業的重要性 5 2.2 半導體廠的氟化鈣污泥 6 2.3 半導體廠的製程排氣 10 2.4 中孔洞材料 25 2.5 觸媒材料 35 2.6 吸附應用 44 2.7 實驗分析儀器 56 第三章 研究方法 63 3.1 研究流程 63 3.2 中孔洞材料的製作 65 3.3 觸媒的製作 67 3.4 物理與化學特性的實驗 70 3.5 孔洞吸附材連續反應實驗 71 3.6 實驗使用配備 78 第四章 實驗結果分析 84 4.1 原始材料的化學成分 84 4.2 CF-MCM選擇性吸附材料之材料特性測試結果分析 85 4.3 FE-CF-MCM觸媒之材料特性測試結果分析 98 4.4 CF-MCM吸附HMDS能力之連續反應實驗結果分析 109 4.5 CF-MCM吸附丙酮能力之連續反應實驗結果分析 114 4.6 FE-CF-MCM之丙酮吸附能力連續反應實驗結果分析 118 4.7 選擇性吸附材串接觸媒之連續反應實驗結果分析 123 4.8 工廠模廠測試 127 4.9 實驗結果討論 130 第五章 結論與建議 134 5.1 研究總結 134 5.2 建議 136 英文參考文獻 137 中文參考文獻 143 圖目錄 圖 1:2010年~2018年全球半導體市場規模 5 圖 2:2010年~2017年台灣半導體產業產值 6 圖 3:半導體廠廢水處理流程示意圖 8 圖 4:脫水機、裝污泥的太空包與污泥 9 圖 5:水泥製程添加氟化鈣之流程圖 10 圖 6:典型的半導體廠排氣系統分類示意圖 11 圖 7:揮發性有機物排氣處理適用處理方法 17 圖 8:沸石濃縮轉輪的外觀 18 圖 9:典型的VOCs廢氣處理流程圖 19 圖 10:VOCs廢氣處理系統外觀的實例照片 19 圖 11:微影製程步驟流程圖 22 圖 12:HMDS與表面作用之化學機制 23 圖 13:HMDS等形成SiO2粉末堆積實例 24 圖 14:HMDS等形成SiO2粉末阻塞蓄熱磚實例 25 圖 15:多孔材料的孔徑分佈示意圖一 26 圖 16:多孔材料的孔徑分佈示意圖二 27 圖 17:M41S 家族中孔洞分子篩孔洞骨架示意圖 30 圖 18:液晶相機制之兩種可能形成路徑 32 圖 19:微胞晶相變化示意圖 33 圖 20:有無觸媒之化學反應與活化能之關係 36 圖 21:不同形式觸媒 37 圖 22:觸媒反應機構示意圖 38 圖 23:燒結現象示意圖 43 圖 24:阻塞現象示意圖 44 圖 25:吸附床貫穿曲線示意圖 46 圖 26:氮氣等溫吸/脫附曲線類型 49 圖 27:氮氣等溫吸/脫附遲滯曲線類型 52 圖 28:MCM-41對於乙醇及苯之等溫吸附曲線 53 圖 29:全新與多次之飽和吸附量比較 54 圖 30:HMDS 與丙酮競爭吸附機理圖 55 圖 31:X-射線激發樣品中的原子示意圖 57 圖 32:晶體繞射X光時,布拉格方程式之幾何關係 57 圖 33:研究流程圖 64 圖 34:CF-MCM選擇性中孔洞材料的製作流程 65 圖 35:選擇性中孔洞材料成品圖 67 圖 36:Fe-CF-MCM觸媒材料的製作流程 69 圖 37:觸媒成品圖 70 圖 38:材料連續反應實驗基本架構圖 72 圖 39:材料反應管詳圖 73 圖 40:選擇性吸附材連續吸附反應測試系統組裝圖 74 圖 41:連續觸媒反應測試系統組裝圖 75 圖 42:選擇性吸附材串接觸媒連續吸附反應測試系統組裝圖 77 圖 43:丙酮、氫氣、空氣、HMDS及氦氣鋼瓶外觀照 78 圖 44:廢石英砂與CaF2化學成份比較圖 84 圖 45:各種CF含量比例之中孔洞材料的化學成份分析圖 86 圖 46:CF-MCM之粉末繞射光譜圖 87 圖 47:5%~40% CF含量之CF-MCM粉末繞射光譜圖 87 圖 48:XRD晶面距離示意圖 89 圖 49:XRD數據參數代表意義 89 圖 50:各種CF-MCM含量之氮氣等溫吸附/脫附曲線圖 90 圖 51:各種CF-MCM材料之孔徑分佈曲線 91 圖 52:CF-MCM中孔洞材料的比表面積比較圖 92 圖 53:CF-MCM中孔洞材料的孔隙容積比較圖 92 圖 54:CF-MCM中孔洞材料的孔洞尺寸 93 圖 55:鍛燒前後各種CF-MCM中孔材料的FTIR分析結果 94 圖 56:MCM-41原材料之SEM圖 95 圖 57:5% CF-MCM之SEM圖 95 圖 58:MCM-41之EDS圖 96 圖 59:5% CF-MCM之EDS圖 96 圖 60:MCM-41材料之TEM圖 97 圖 61:5% CF-MCM材料之TEM圖 97 圖 62:5% CF-MCM材料孔洞之TEM放大圖 98 圖 63:20% CF-MCM材料之TEM圖 98 圖 64:Fe-CF-MCM之粉末繞射光譜圖 99 圖 65:各種Fe-CF-MCM含量之氮氣等溫吸附/脫附曲線圖 101 圖 66:各種Fe-CF-MCM材料之孔徑分佈曲線 101 圖 67:Fe-CF-MCM中孔洞材料的表面積比較圖 102 圖 68:Fe-CF-MCM中孔洞材料的孔隙容積比較圖 103 圖 69:Fe-CF-MCM中孔洞材料的孔洞尺寸 103 圖 70:鍛燒前後各種Fe-CF-MCM中孔材料的FT-IR分析結果 104 圖 71:MCM-41之SEM圖 105 圖 72:4% Fe-CF-MCM之SEM圖 105 圖 73:MCM-41之EDS圖 106 圖 74:4% Fe-CF-MCM之EDS圖 106 圖 75:MCM-41材料之TEM圖 107 圖 76:4% Fe-CF-MCM材料之TEM圖 107 圖 77:10% Fe-CF-MCM材料之TEM圖 108 圖 78:不同含鐵量Fe-CF-MCM觸媒之TGA圖 109 圖 79:HMDS貫穿曲線 111 圖 80:各種停留時間下對HMDS吸附之貫穿曲線 112 圖 81:不同CF含量之選擇性吸附材的連續反應曲線 113 圖 82:各種不同氟化鈣含量於濃度500 ppm之影響 115 圖 83:各種不同氟化鈣含量於濃度1000 ppm之影響 116 圖 84:各種不同氟化鈣含量於濃度1500 ppm之影響 116 圖 85:各種不同氟化鈣含量於濃度2000 ppm之影響 116 圖 86:各種停留時間下5% CF-MCM對丙酮吸附之貫穿曲線 117 圖 87:各種溫度下對丙酮吸附之貫穿曲線 118 圖 88:各種Fe含量與溫度之丙酮吸附實驗結果 120 圖 89:各種進流濃度下對觸媒反應之影響曲線 121 圖 90:不同反應溫度下對觸媒反應之影響曲線 122 圖 91: 10% Fe-CF-MCM對觸媒反應之長效性 123 圖 92:典型的半導體廠VOCs排氣處理系統示意圖 124 圖 93:丙酮轉化率與反應溫度關係圖 125 圖 94:裝設選擇性吸附反應器對觸媒轉化率之影響 126 圖 95:選擇性吸附材串觸媒連續反應之長效性曲線 127 圖 96:第一次模廠測試留影 127 圖 97:第一次模廠選擇性吸附材連續吸附HMDS測試曲線 128 圖 98:第二次模廠測試留影 129 圖 99:第二次模廠選擇性吸附材加觸媒連續吸附HMDS測試曲線 130 圖 100:目前的VOCs廢氣處理方式(As-Is model) 135 圖 101:未來的VOCs廢氣處理方式(To-Be model) 135 表目錄 表 1:Solvent exhaust防污處理前實測數據 14 表 2:揮發性有機物廢氣之控制技術 16 表 3:廢氣處理技術之參考準則 17 表 4:HMDS之特性 22 表 5:HMDS之危害性 23 表 6:IUPAC定義之多孔性材料分類 26 表 7:水熱法合成 MCM-41之方法步驟差異比較 35 表 8:貴重金屬與一般金屬為觸媒材之處理的效果 39 表 9:貴重金屬與一般金屬差異 40 表 10:觸媒活性衰退原因 42 表 11:物理吸附與化學吸附特性之比較 45 表 12:HMDS去除參考文獻一覽表 55 表 13:丙酮去除參考文獻一覽表 56 表 14:不同紅外線光譜區之大約界限 60 表 15:選擇性吸附材連續吸附反應測試設定參數 74 表 16:連續觸媒反應測試設定參數 76 表 17:選擇性吸附材串接觸媒連續吸附反應測試系統設定參數 77 表 18:實驗使用材料表 78 表 19:實驗設備一覽表 79 表 20:實驗用儀器一覽表 81 表 21:廢石英砂與CaF2化學成份表 85 表 22:各種CF含量比例之中孔洞材料的化學成份分析表 86 表 23:各種CF-MCM材料鍛燒後之XRD數據 88 表 24:CF-MCM中孔洞材料的比表面積、孔隙容積及孔洞尺寸 91 表 25:各種Fe-CF-MCM材料鍛燒後之XRD數據 100 表 26:Fe-CF-MCM中孔洞材料的表面積、孔隙容積及孔洞尺寸 102 表 27:各觸媒於各階段重量損失變化彙整表 110 表 28:吸附不同濃度HMDS之貫穿時間 110 表 29:各種停留時間下對HMDS吸附能力比較表 112 表 30:不同CF含量吸附HMDS之能力 113 表 31:四種氟化鈣含量對於不同濃度VOCs之吸附能力比較 115 表 32:不同溫度與不同Fe含量下之丙酮吸附實驗結果分析 119 表 33:不同溫度與丙酮濃度下之吸附實驗結果分析 121 表 34:研製中孔洞材料與觸媒之藥品價格 133 表 35:研製各中孔洞材料與觸媒之成本 133 | |
dc.language.iso | zh-TW | |
dc.title | 廢棄污泥做成製程排氣除污利器之研究 | zh_TW |
dc.title | To Recycle Calcium Fluoride Sludge for Mitigating Air Pollutant of a Semiconductor Fab | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳柏翰,郭斯傑,張章堂,胡石政,詹瀅潔 | |
dc.subject.keyword | 氟化鈣污泥,中孔洞材料, | zh_TW |
dc.subject.keyword | HMDS,VOCs, | en |
dc.relation.page | 145 | |
dc.identifier.doi | 10.6342/NTU201900543 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-02-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
Appears in Collections: | 土木工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 5.68 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.