Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71342
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡武廷
dc.contributor.authorGuan-Hung Luen
dc.contributor.author呂冠鴻zh_TW
dc.date.accessioned2021-06-17T05:59:08Z-
dc.date.available2019-02-15
dc.date.copyright2019-02-15
dc.date.issued2019
dc.date.submitted2019-02-14
dc.identifier.citationAdelson, E., Anderson, C., Bergen, J., Burt, P., and Ogden, J. (1984). Pyramid methods in image processing. RCA Eng., 29(6):33–41.
Burt, P. and Adelson, E. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4):532–540.
Deering, R. and Kaiser, J. F. (2005). The use of a masking signal to improve empirical mode decomposition. In Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., volume 4, pages iv/485–iv/488.
Garbe, C. S., Schimpf, U., and Jahne, B. (2004). A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air-sea heat and gas exchange. J. Geophys. Res.-Oceans, 109(C8):1–18.
Handler, R. A., Savelyev, I., and Lindsey, M. (2012). Infrared imagery of streak formation in a breaking wave. Physics of Fluids, 24(12):121701.
Handler, R. A., Smith, G. B., and Leighton, R. I. (2001). The thermal structure of an air-water interface at low wind speeds. Tellus A, 53(2):233–244.
Hara, T., VanInwegen, E., Wendelbo, J., Garbe, C. S., Schimpf, U., Jahne, B., and Frew, N. (2007). Estimation of Air-Sea Gas and Heat Fluxes from Infrared Imagery Based on Near Surface Turbulence Models, pages 241–254. Springer Berlin Heidelberg, Berlin, Heidelberg.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc., Ser. A(454):903–995.
Huang, N. E. and Wu, Z. (2008). A review on Hilbert-Huang transform method and its applications to geophysical studies. Rev. of Geophys., 46:1–23.
Jahne, B., Libner, P., Fischer, R., Billen, T., and Plate, E. J. (1989). Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method. Tellus B, 41B(2):177–195.
Jahne, B., Munnich, K. O., Bosinger, R., Dutzi, A., Huber, W., and Libner, P. (1987). On parameters influencing air-water gas exchange. J. Geophys. Res., 92(C2):1937–1949.
Jahne, B. and Riemer, K. S. (1990). Two-dimensional wave number spectra of small-scale water surface waves. J. Geophys. Res., 95:11531–11546.
Melville, W. K., Shear, R., and Veron, F. (1998). Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech., 364:31–58.
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber., 9(1):62–66.
Saylor, J. R. and Handler, R. A. (1999). Capillary wave gas exchange in the presence of surfactants. Exp. Fluids, 27:332–338.
Schnieders, J. (2015). Analyzing the footprints of turbulence producing mechanisms at the free water surface. PhD thesis, University of Heidelberg, Germany.
Schnieders, J., Garbe, C. S., Peirson, W. L., Smith, G. B., and Zappa, C. J. (2013). Analyzing the footprints of near-surface aqueous turbulence: An image processing-based approach. J. Geophys. Res.-Oceans, 118:1272–1286.
Scott, N. V., Handler, R. A., and Smith, G. B. (2008). Wavelet analysis of the surface temperature field at an air-water interface subject to moderate wind stress. Int. J. Heat Fluid Flow, 29(4):1103–1112.
Smith, C. R. and Metzler, S. P. (1983). The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech., 129:27–54.
Smith, G. B., Handler, R. A., and Scott, N. (2007). Observations of the structure of the surface temperature field at an air-water interface for stable and unstable cases. Transport at the Air Sea Interface-Measurements, Models and Parameterizations, edited by C. S. Garbe, R. A. Handler, and B. Jahne, Springer-Verlag, Heidelberg, pages 205–222.
Tsai, W.-T., Chen, S.-M., Lu, G.-H., and Garbe, C. S. (2013). Characteristics of interfacial signatures on a wind-driven gravity-capillary wave. J. Geophys. Res.-Oceans, 118:1715–1735.
Tsai, W.-T., Chen, S.-M., and Meong, C.-H. (2005). A numerical study on the evolution and structure of a stress-driven free-surface turbulent shear flow. J. Fluid Mech., 545:163–192.
Veron, F. and Melville, W. K. (2001). Experiments on the stability and transition of winddriven water surfaces. J. Fluid Mech., 446:25–65.
Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image quality assessment: from error visibility to structural similaritys. IEEE Trans. Image Process., 13(4):600–612.
Wu, Z. and Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. London A8, 460:1597–1611.
Wu, Z. and Huang, N. E. (2009). Ensemble empirical mode decomposition: A noiseassisted data analysis method. Adv. Adapt. Data Anal., 1(1):1–41.
Wu, Z., Huang, N. E., and Chen, X. (2009). The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal., 1(3):339–372.
Yeh, J.-R., Shieh, J.-S., and Huang, N. E. (2010). Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adapt. Data Anal., 02(02):135–156.
Zhang, X. (1995). Capillary-gravity and capillary waves generated in a wind wave tank: Observations and theories. J. Fluid Mech., 289:51–82.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71342-
dc.description.abstract本研究以影像處理技術分析實驗水槽之風剪驅動自由液面紊流邊界層的水面流場之結構。首先應用二維整體經驗模態分解法進行風浪表面熱圖像的分離,將影像區分為重力波、表面張力波、朗繆爾環流(Langmuir circulations)、以及風剪產生之沿流向擬序渦流(coherent vortices)所造成的結構,並計算各機制於不同風速下於熱圖像結構之貢獻。結果發現:在低風速時,擬序渦流造成的貢獻最大,而朗繆爾環流的貢獻最小;隨著風速上升,擬序渦流的影響持續減弱,而朗繆爾環流的貢獻則持續上升,直到與其他機制的貢獻相當。重力波之貢獻隨著風速的變化不大,但當波浪的微破碎(micro-breaking)事件發生時,破碎所產生的紊流於重力波峰處構成了明顯的跨流向結構,並被歸類於重力波所造成的結構,導致重力波的貢獻遠大於其他機制。而表面張力波所造成的貢獻於大多時候都小於其他機制,但於高風速時則明顯變大,其亦可能與波浪完全破碎所產生的跨流向渦流結構有關。擬序渦流所造成的水面條痕結構可進一步以圖像分割技術(image segmentation technique)分析,並探討其特性隨風剪力之變化。結果發現:條痕間距之分布於不同風速皆呈現對數常態分布;平均條痕間距隨著風速愈大而變小,而透過黏滯長度(viscous length)無因次化之平均條痕間距則隨著風速愈大而變大,不同於牆面紊流邊界層,其為 100 個黏滯長度單位之定值。zh_TW
dc.description.abstractAn image processing technique, which is based on 2-D ensemble empirical mode decomposition, is developed to decompose the thermal images at wind-wave surfaces with various wind conditions. Four components attributed to different flow processes, including the gravity waves, parasitic capillary waves, Langmuir circulations, and the streamwisely elongated coherent vortices induced by wind shear, and the corresponding contribution fractions are derived. In the lowest wind speed case, coherent vortices contribute the most to the surface signatures, and Langmuir circulations contribute the least. As wind speed grows, the contribution of coherent vortices decreases; in contrast, the contribution of Langmuir circulations keeps growing and becomes competitive with that of other flow processes in moderate wind conditions. The contribution of gravity waves does not change much with the present cases, except the micro-breaking case, in which the contribution of gravity waves is much larger than the others, since the signatures induced by spilling breakers are classified into the attribution of gravity waves. The capillary waves contribute little to the thermal images, but become significant at the present highest wind speed, which may also be attributed to the spanwisely elongated small vortices due to fully wave breaking. The surface streaky signatures attributed to the coherent vortices can be further identified utilizing the image segmentation techniques, and the statistics of spanwise streak spacing can therefore be calculated. It is found that the distributions of streak spacing from low to high wind speed match log-normal probability density distributions. Furthermore, the mean streak spacing decreases as wind speed grows; the non-dimensional mean streak spacing in viscous length scale, however, increases with wind speed, different from that of wall turbulent boundary layer, which is a constant 100 viscous unit.en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:59:08Z (GMT). No. of bitstreams: 1
ntu-108-D01525011-1.pdf: 206872729 bytes, checksum: 4fc4b88752f2bbfec23493c0847d4459 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Data descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Numerical simulation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Infrared images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Signature decomposition methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 One-dimensional empirical mode decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Two-dimensional empirical mode decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Direction-based component combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3.4 Scale-based IMF combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Combination of wave-associated IMFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.4.2 Combination of vortex-associated IMFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
4 Decomposition of surface signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
4.1 Decomposition of numerical surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
4.2 Decomposition of infrared image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
5 Identification of streaky signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Detection of streak regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Enhancement of streaky signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
5.3 Grouping of streak regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 Statistics of streak spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
A The analyzed results of another set of experiments conducted in Aeolotron . . .63
B The effect of image rotation to signature decomposition . . . . . . . . . . . . . . . . . . .69
C The sensitivity test of the decomposition criteria . . . . . . . . . . . . . . . . . . . . . . . . .73
D Image enhancement methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
D.1 Historgram equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
D.2 Gamma correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
dc.language.isoen
dc.title應用二維整體經驗模態分解法分析風浪紊流場之表面結構zh_TW
dc.titleUsing 2-D Ensemble Empirical Mode Decomposition to Extract Characteristic Wind-wave Signaturesen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee戴璽恆,張恆華,王偉仲,陳世楠,陳世明
dc.subject.keyword經驗模態分解法,影像處理,結構分離,紊流邊界層,zh_TW
dc.subject.keywordEMD,image processing,signature decomposition,turbulent boundary layer,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201900573
dc.rights.note有償授權
dc.date.accepted2019-02-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
202.02 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved