Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政忠
dc.contributor.authorYen-Ta Chuen
dc.contributor.author朱彥達zh_TW
dc.date.accessioned2021-06-17T05:59:04Z-
dc.date.available2022-02-19
dc.date.copyright2019-02-19
dc.date.issued2019
dc.date.submitted2019-02-14
dc.identifier.citation[1] V. M. Malhotra and N. J. Carino, CRC handbook on nondestructive testing of concrete. CRC press, 1991.
[2] D. E. Bray and D. McBride, 'Nondestructive testing techniques,' NASA STI/Recon Technical Report A, vol. 93, 1992.
[3] J. S. Popovics and J. L. Rose, 'A survey of developments in ultrasonic NDE of concrete,' IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 41, no. 1, pp. 140-143, 1994.
[4] J. Andersen and P. Nerenst, 'Wave Velocity in Concrete (engelsk tekst). p,' ed: Dkr.1952.
[5] M. Ohtsu, T. Okamoto, and S. Yuyama, 'Moment tensor analysis of acoustic emission for cracking mechanisms in concrete,' Structural Journal, vol. 95, no. 2, pp. 87-95, 1998.
[6] A. Momber, R. Mohan, and R. Kovacevic, 'On-line analysis of hydro-abrasive erosion of pre-cracked materials by acoustic emission,' Theoretical and Applied Fracture Mechanics, vol. 31, no. 1, pp. 1-17, 1999.
[7] S. Nazarian and M. R. Desai, 'Automated surface wave method: field testing,' Journal of Geotechnical Engineering, vol. 119, no. 7, pp. 1094-1111, 1993.
[8] N. J. Carino, M. Sansalone, and N. N. Hsu, 'A point source-point receiver, pulse-echo technique for flaw detection in concrete,' in Journal Proceedings, vol. 83, no. 2, pp. 199-208, 1986.
[9] Y. Lin and M. Sansolone, 'Detecting flaws in concrete beams and columns using the impact-echo method,' Materials Journal, vol. 89, no. 4, pp. 394-405, 1992.
[10] C.-C. Cheng and M. Sansalone, 'Effects on impact-echo signals caused by steel reinforcing bars and voids around bars,' Materials Journal, vol. 90, no. 5, pp. 421-434, 1993.
[11] K. Krzemień and I. Hager, 'Post-fire assessment of mechanical properties of concrete with the use of the impact-echo method,' Construction and Building Materials, vol. 96, pp. 155-163, 2015.
[12] X. Lu, Q. Sun, W. Feng, and J. Tian, 'Evaluation of dynamic modulus of elasticity of concrete using impact-echo method,' Construction and Building Materials, vol. 47, pp. 231-239, 2013.
[13] A. Garbacz, T. Piotrowski, L. Courard, and L. Kwaśniewski, 'On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis,' Construction and Building Materials, vol. 134, pp. 311-323, 2017.
[14] P.-L. Liu, L.-C. Lin, Y.-Y. Hsu, C.-Y. Yeh, and P.-L. Yeh, 'Recognition of rebars and cracks based on impact-echo phase analysis,' Construction and Building Materials, vol. 142, pp. 1-6, 2017.
[15] P.-L. Yeh and P.-L. Liu, 'Application of the wavelet transform and the enhanced Fourier spectrum in the impact echo test,' NDT & E International, vol. 41, no. 5, pp. 382-394, 2008.
[16] T. T. Wu, J. S. Fang, G. Y. Liu, and M. K. Kuo, 'Determination of elastic constants of a concrete specimen using transient elastic waves,' The Journal of the Acoustical Society of America, vol. 98, no. 4, pp. 2142-2148, 1995.
[17] T.-T. Wu and J.-S. Fang, 'A new method for measuring in situ concrete elastic constants using horizontally polarized conical transducers,' The Journal of the Acoustical Society of America, vol. 101, no. 1, pp. 330-336, 1997.
[18] T. T. Wu, J. S. Fang, and P. L. Liu, 'Detection of the depth of a surface‐breaking crack using transient elastic waves,' The Journal of the Acoustical Society of America, vol. 97, no. 3, pp. 1678-1686, 1995.
[19] D. Silver et al., 'Mastering the game of Go with deep neural networks and tree search,' Nature, vol. 529, no. 7587, pp. 484-489, 2016.
[20] D. Silver et al., 'Mastering the game of go without human knowledge,' Nature, vol. 550, no. 7676, pp. 354-359, 2017.
[21] G. E. Hinton and R. R. Salakhutdinov, 'Reducing the dimensionality of data with neural networks,' science, vol. 313, no. 5786, pp. 504-507, 2006.
[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'Imagenet classification with deep convolutional neural networks,' in Advances in neural information processing systems, pp. 1097-1105, 2012.
[23] K. He, X. Zhang, S. Ren, and J. Sun, 'Deep residual learning for image recognition,' in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 'Gradient-based learning applied to document recognition,' Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[25] C. Szegedy et al., 'Going deeper with convolutions,' in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9, 2015.
[26] K. Cho et al., 'Learning phrase representations using RNN encoder-decoder for statistical machine translation,' arXiv preprint arXiv:1406.1078, 2014.
[27] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, 'A recurrent latent variable model for sequential data,' in Advances in neural information processing systems, pp. 2980-2988, 2015.
[28] N. Kalchbrenner, I. Danihelka, and A. Graves, 'Grid long short-term memory,' arXiv preprint arXiv:1507.01526, 2015.
[29] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, 'LSTM: A search space odyssey,' IEEE transactions on neural networks and learning systems, 2017.
[30] A. Khashman and P. Akpinar, 'Non-Destructive Prediction of Concrete Compressive Strength Using Neural Networks,' Procedia Computer Science, vol. 108, pp. 2358-2362, 2017.
[31] A. A. Shah, S. H. Alsayed, H. Abbas, and Y. A. Al-Salloum, 'Predicting residual strength of non-linear ultrasonically evaluated damaged concrete using artificial neural network,' Construction and Building Materials, vol. 29, pp. 42-50, 2012.
[32] Z. Dahou, Z. M. Sbartaï, A. Castel, and F. Ghomari, 'Artificial neural network model for steel–concrete bond prediction,' Engineering Structures, vol. 31, no. 8, pp. 1724-1733, 2009.
[33] Y. J. Cha, W. Choi, and O. Büyüköztürk, 'Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks,' Computer‐Aided Civil and Infrastructure Engineering, vol. 32, no. 5, pp. 361-378, 2017.
[34] Ł. Sadowski, 'Non-destructive identification of pull-off adhesion between concrete layers,' Automation in Construction, vol. 57, pp. 146-155, 2015.
[35] L. T. Wheeler, 'Wave Propagation in Elastic Solids (JD Achenbach),' SIAM Review, vol. 16, no. 4, p. 558, 1974.
[36] K. Gra, 'Wave motion in elastic solids,' Ohio State University, 1975.
[37] 方金壽, '暫態彈性波在混凝土品質與裂縫偵測之應用,' National Taiwan University Institute of Applied Mechanics, 1996.
[38] Z. Zhang, Impact force measurement by signal deconvolution. Cornell University, March, 1983.
[39] Y. V. Lange, 'The local method of free elastic vibrations and its applications to testing in industry,' NDT international, vol. 18, no. 5, pp. 256-260, 1985.
[40] M. Sansalone and N. Carino, 'Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves', NBSIR 86-3452, National Bureau of Standards, Washington, DC,' PB 87-10444/AS (National Technical Information Service, Springfield, MA, 1986)1986.
[41] W. Goldsmith, Impact: The theory and physical behavior of colliding solids. Arnold, 1960.
[42] D. P. Kingma and J. Ba, 'Adam: A method for stochastic optimization,' arXiv preprint arXiv:1412.6980, 2014.
[43] N. Qian, 'On the momentum term in gradient descent learning algorithms,' Neural networks, vol. 12, no. 1, pp. 145-151, 1999.
[44] B. A. Smith, R. W. McClendon, and G. Hoogenboom, 'Improving air temperature prediction with artificial neural networks,' International Journal of Computational Intelligence, vol. 3, no. 3, pp. 179-186, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71338-
dc.description.abstract混凝土在大部分的土木結構中扮演不可或缺的角色,非破壞檢測技術即提供了對於新建、現有、老舊或災後建築的混凝土品質監控及評估有效且可行的解決方案。其中時間域暫態彈性波法對於彈性波波速的量測具有直接且易於現地量測之特性,然而通常需要有經驗的專業操作者進行訊號處理及分析,且間接求得橫波波速的方法會導致計算材料常數時有誤差產生。
深度學習為人工智慧的其中一項技術,可以自行提取資料之重要特徵,學習解決問題的規則。本研究結合時間域暫態彈性波法之訊號量測方法與人工智慧預測混凝土彈性波波速。將一筆訊號以包含縱波、橫波及表面波資訊的視窗的方式輸入模型供其學習,首先設計各種類神經網路,包括深度類神經網路、卷積類神經網路與遞迴類神經網路之最佳架構,其不論與過去之多層感知器亦或是傳統量測方法相比,於彈性波波速及材料常數之計算都有較好的表現。而其中卷積類神經網路局部擷取訊號特徵的模式為最適合預測彈性波波速之模型,訓練準確率與測試準確率分別為99.84%與99.80%。
實際量測混凝土試體後,對模型進行調整,增加訊號前處理以過濾不重要資訊,避免模型學習過多無關特徵,有助於辨識實驗訊號,使得實驗之平均預測準確率由92.08%上升至96.06%。比較理論及實驗訊號發現,當視窗抓取數量為25個以上時,類神經網路模型之預測波速和視窗位置無關,另外還需根據模型的使用環境來建立訓練的理論訊號數據庫。由於一筆位移訊號事實上包含了三種彈性波資訊,將人工智慧的訓練過程以人類的學習角度來思考,若能夠告訴人工智慧模型越多知識,其學習效果就能越好。本研究設計之最佳類神經網路模型為卷積類神經網路模型,其對於實驗訊號彈性波波速預測之縱波準確率為96.38%、橫波準確率為97.28%、表面波準確率為94.52%,平均準確律為96.06%。
zh_TW
dc.description.abstractConcrete plays an important role in civil structures. The nondestructive test provides an effective method to monitor and evaluate the quality of concrete in new, existing, or post-disaster building. Transient elastic wave method is one technique of the nondestructive tests by measuring elastic wave velocities of concrete. It can be applied directly and simply in site, but it usually needs experts to process and analyze signals. Moreover, Lamé constants are estimated by wave velocities and some errors appear because transverse velocity is calculated indirectly.
Deep learning is a technique of artificial intelligence (AI). It can extract important features by learning the rules of data and can solve many kinds of problem. In this thesis, AI models were developed to predict elastic wave velocities from results of transient elastic wave method. Wave signals selected from a window were input into the model to train the AI algorithm to analyze information of longitudinal wave, transverse wave and Rayleigh wave. First, the deep neural network, convolutional neural network and recurrent neural network were designed and optimized. The AI algorithms performed better than the traditional method in calculating elastic wave velocities and Lamé constants. The convolutional neural network has the best performance, whose training accuracy and testing accuracy are 99.84% and 99.80%, respectively.
The AI models were modified further after measuring real concrete specimen. Wave signals with pre-processing can remove unnecessary information and avoid the model learning unrelated features. Pre-processing helps AI model identifying experimental signals effectively. The experimental accuracy raised from 92.08% to 96.06%. After comparing theoretical and experimental signals, we found that the prediction of wave velocities is converged on more than 25 different starting-positions of windows. We also designed the training dataset from the real operational condition. We got a better result if we trained the AI model to solve three kinds of elastic wave information in the displacement signals at the same time. In this study, the best AI model is a convolutional neural network, whose experimental accuracy of longitudinal wave velocity, transverse wave velocity, and Rayleigh wave velocity are 96.38%, 97.28% and 94.52%, respectively, and the average experimental accuracy is 96.06%.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:59:04Z (GMT). No. of bitstreams: 1
ntu-108-R05543043-1.pdf: 4858326 bytes, checksum: c400810cec491ecbabf221e3fcb386bd (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 XI
符號對照表 XIII
第一章 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 6
第二章 暫態彈性波波速量測 8
2.1 彈性波波速量測 8
2.2 半無窮域受正向點波源作用之表面位移 10
第三章 類神經網路原理 19
3.1 網路架構 19
3.1.1 深度類神經網路 19
3.1.2 卷積類神經網路 21
3.1.3 遞迴類神經網路 23
3.2 學習方法 25
3.2.1 參數更新法 26
3.2.2 反向傳播法 27
第四章 類神經網路模型設計 34
4.1 模型概述 34
4.1.1 數據資料庫 35
4.1.2 輸入與輸出層 36
4.1.3 取樣時距 37
4.2 深度類神經網路 38
4.2.1 神經元數量與隱藏層層數初步分析 38
4.2.2 決定模型架構 39
4.3 卷積類神經網路 41
4.3.1 卷積層及池化層分析 41
4.3.2 卷積特徵 43
4.4 遞迴類神經網路 44
4.5 時間域暫態彈性波法 45
第五章 混凝土彈性波波速量測 66
5.1 試體規劃與實驗結果 66
5.1.1 實驗試體之設計與製作 66
5.1.2 彈性波訊號量測 67
5.2 以類神經網路模型預測彈性波波速 68
5.2.1 輸入原始訊號預測彈性波波速 68
5.2.2 增加訊號前處理 69
5.3 理論及實驗訊號比較 71
5.3.1 訊號視窗抓取位置 71
5.3.2 波源作用時間 72
5.4 改變模型輸出方式 73
5.4.1 預測單一波速 74
5.4.2 預測兩種波速 75
第六章 結論與未來展望 102
6.1 結論 102
6.2 未來展望 103
參考文獻 105
dc.language.isozh-TW
dc.subject深度學習zh_TW
dc.subject人工智慧zh_TW
dc.subject暫態彈性波zh_TW
dc.subject非破壞檢測zh_TW
dc.subject類神經網路zh_TW
dc.subjectNondestructive testen
dc.subjectTransient waveen
dc.subjectArtificial intelligenceen
dc.subjectDeep learningen
dc.subjectNeural networken
dc.title以人工智慧預測混凝土之彈性波波速zh_TW
dc.titlePrediction of Elastic Wave Velocities in Concrete
Using Artificial Intelligence
en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張瑞益,陳永裕,孫嘉宏
dc.subject.keyword非破壞檢測,暫態彈性波,人工智慧,深度學習,類神經網路,zh_TW
dc.subject.keywordNondestructive test,Transient wave,Artificial intelligence,Deep learning,Neural network,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201900576
dc.rights.note有償授權
dc.date.accepted2019-02-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved