Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71336Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 韓仁毓 | |
| dc.contributor.author | Yan-Ting Lin | en |
| dc.contributor.author | 林彥廷 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:59:02Z | - |
| dc.date.available | 2026-02-14 | |
| dc.date.copyright | 2019-02-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-14 | |
| dc.identifier.citation | Ackermann, F., 1984. Digital image correlation: performance and potential application in photogrammetry. The Photogrammetric Record, 11(64), 429-439.
Aguilar, F. J., Agüera, F., Aguilar, M. A., and Carvajal, F., 2005. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric Engineering & Remote Sensing, 71(7), 805-816. Ackerman, C. T., 2005. HEC-GeoRAS; GIS Tools for support of HEC-RAS using ArcGIS. United States Army Corps of Engineers, Davis. Ahmadisharaf, E., Kalyanapu, A. J., and Chung, E. S., 2015. Evaluating the effects of inundation duration and velocity on selection of flood management alternatives using multi-criteria decision making. Water Resources Management, 29(8), 2543-2561. Buchanan, T. J., and Somers, W. P., 1968. Stage measurement at gaging stations. US Government Printing Office. Bazin, H. É., 1898. Experiences nouvelles sur l'ecoulement en deversoir: executees a Dijon de 1886 a 1895. Dunod. Brus, D. J., De Gruijter, J. J., Marsman, B. A., Visschers, R., Bregt, A. K., Breeuwsma, A., and Bouma, J., 1996. The performance of spatial interpolation methods and choropleth maps to estimate properties at points: a soil survey case study. Environmetrics, 7(1), 1-16. Brasington, J., Rumsby, B. T., and McVey, R. A., 2000. Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surface Processes and Landforms, 25(9), 973-990. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L., 2008. Speeded-up robust features (SURF), Computer vision and image understanding, 110(3), 346-359. Barazzetti, L., and Scaioni, M., 2010. Development and implementation of image-based algorithms for measurement of deformations in material testing, Sensors, 10(8), 7469–7495. Brook, A., and Ben-Dor, E., 2011. Automatic registration of airborne and spaceborne images by topography map matching with SURF processor algorithm, Remote Sens., 3(1), 65–82. Bairagi, B. K., Chatterjee, A., Das, S. C., and Tudu, B., 2012. Expressions invariant face recognition using SURF and Gabor features, In Emerging Applications of Information Technology (EAIT), 2012 Third International Conference on (pp. 170-173). IEEE. Bulatov, D., Häufel, G., Meidow, J., Pohl, M., Solbrig, P., and Wernerus, P., 2014. Context-based automatic reconstruction and texturing of 3D urban terrain for quick-response tasks. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 157-170. Costa, J. E., Spicer, K. R., Cheng, R. T., Haeni, F. P., Melcher, N. B., Thurman, E. M., Plant, W. J., and Keller, W. C., 2000. Measuring stream discharge by non‐contact methods: A proof‐of‐concept experiment. Geophysical Research Letters, 27(4), 553–556. Cousins, S. A., 2001. Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs. Landscape ecology, 16(1), 41-54. Colombo, O. L., Sutter, A. W., and Evans, A. G., 2004. Evaluation of precise, kinematic GPS point positioning. In Proceedings of ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, California (pp. 1423-1430). Chipman, J. W., Kiefer, R. W., and Lillesand, T. M., 2004. Remote sensing and image interpretation. New York. Chen, Y. C., Kuo, J. T., Yang, H. C., Yu, S. R., and Yang., H. C., 2007. Discharge measurement during high flow. Journal of Taiwan Water Conservancy, 55, 21–33. Chang, Y. L., Chen, Z. M., Liu, J. N., Chang, L., and Fang, J. P., 2010. Parallel K-dimensional tree classification based on semi-matroid structure for remote sensing applications. In SPIE Optical Engineering+ Applications (pp. 78100S-78100S). International Society for Optics and Photonics. Chen, Z., Qin, Q., Lin, L., Liu, Q., and Zhan, W., 2013. DEM densification using perspective shape from shading through multispectral imagery. IEEE Geoscience and Remote Sensing Letters, 10(1), 145-149. Chen, W. B., and Liu, W. C., 2017. Modeling the Influence of River Cross-Section Data on a River Stage Using a Two-Dimensional/ Three-Dimensional Hydrodynamic Model. Water 9(3), 1-24. Declercq, F. A. N., 1996. Interpolation methods for scattered sample data: accuracy, spatial patterns, processing time. Cartography and Geographic Information Systems, 23(3), 128-144. Förstner, W., 1982. On the geometric precision of digital correlation. Int. Arch. Photogrammetry and Remote Sensing, 24(3), 176–189. Fukami, K., Yamaguchi, T., Imamura, H., and Tashiro, Y., 2008. Current status of river discharge observation using non-contact current meter for operational use in Japan. In World Environmental and Water Resources Congress 2008: Ahupua'A (pp. 1–10). Gauckler, P., 1867. Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux. Gauthier-Villars. Gruen, A., 1985. Adaptive least squares correlation: a powerful image matching technique. South African Journal of Photogrammetry, Remote Sensing and Cartography, 14(3), 175-187. Gallichand, J., and Marcotte, D., 1993. Mapping clay content for subsurface drainage in the Nile Delta. Geoderma, 58(3), 165-179. Gili, J. A., Corominas, J., and Rius, J., 2000. Using Global Positioning System techniques in landslide monitoring. Engineering geology, 55(3), 167-192. Giachetti, A., and Asuni, N., 2008, September. Fast Artifacts-Free Image Interpolation. In BMVC (pp. 1-10). Garcıa-Navarro, P., Brufau, P., Burguete, J., and Murillo, J., 2008. The shallow water equations: An example of hyperbolic system. Monografıas de la Real Academia de Ciencias de Zaragoza, 31, 89-119. Gilmore, T. E., Birgand, F., and Chapman, K. W., 2013. Source and magnitude of error in an inexpensive image-based water level measurement system. Journal of Hydrology, 496, 178-186. Harten, A., 1983. High resolution schemes for hyperbolic conservation laws. Journal of computational physics, 49(3), 357-393. Herschy, R. W., 1999. Flow measurement. Hydrometry: Principles and practice, 2nd Ed., R. W. Herschy, ed., Wiley, New York, 9–83. HEC-GeoRAS, G. I. S., 2005. Tools for Support of HEC-RAS Using ArcGIS User's Manual Version 4.2. US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center (HEC). Jensen, J. R., and Lulla, K., 1987. Introductory digital image processing: a remote sensing perspective. Jianming, C., Chaohai, L., and Mingxie, J., 1996. Application of the repeated aerial photogrammetry to monitoring glacier variation in the drainage area of the Urumqi River. JOURNAL OF GLACIOLGY AND GEOCRYOLOGY, 18(4), 331-336. Kennedy, E. J., 1984. Discharge ratings at gaging stations. Washington: US Government Printing Office. Techniques of water-resources investigations, Book 3, Chap. A 10, USGS. Keuchel, J., Naumann, S., Heiler, M., and Siegmund, A., 2003. Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sensing of Environment, 86(4), 530-541. Kotsiantis, S. B., Zaharakis, I., and Pintelas, P., 2007. Supervised machine learning: A review of classification techniques. Informatica Journal, 31, 249-268. Kalyanapu, A. J., 2011. Monte Carlo based flood risk analysis using a graphics processing unit-enhanced two-dimensional flood model. Dissertation. Department of Civil and Environmental Engineering. The University of Utah. 21-23 p. Kalyanapu, A. J., Shankar, S., Pardyjak, E. R., Judi, D. R., and Burian, S. J., 2011. Assessment of GPU computational enhancement to a 2D flood model. Environmental Modelling and Software, 26(8), 1009-1016. Kalyanapu, A. J., Judi, D. R., McPherson, T. N., and Burian, S. J., 2012. Monte Carlo‐based flood modelling framework for estimating probability weighted flood risk. Journal of Flood Risk Management, 5(1), 37-48. Kalyanapu, A. J., Hossain, A. A., Kim, J., Yigzaw, W., Hossain, F., and Shum, C. K., 2013. Toward a methodology to investigate the downstream flood hazards on the American River due to changes in probable maximum flood due to effects of artificial reservoir size and land-use/land-cover patterns. Earth Interactions, 17(24), 1-24. Lewis, J. P., 1995. Fast normalized cross-correlation. In Vision interface, 10(1), pp. 120-123. Lowe, D. G., 2004. Distinctive image features from scale-invariant keypoints, International journal of computer vision, 60(2), 91-110. Lin, C. H., Chuang, H. K., Lin, M. L., and Huang, W. C., 2013. Establishment of the watershed image classified rule-set and feasibility assessment of its application. In Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV) (p. 1). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). Leick, A., Rapoport, L., and Tatarnikov, D., 2015. GPS satellite surveying. John Wiley & Sons. 400-473. Lin, Y. T., Lin, Y. C., Han, J. Y., 2018a. Automatic Water-Level Detection Using Single-Camera Images. J. Measurement, 127, 167-174. Lin, Y. T., Chen W. B., Su Y. F., Han, J. Y., and Jang, J. H., 2018b. Improving river stage forecast by bed reconstruction in sinuous bends. J. Hydroinform., 20(4), 960-974. Manning, R., 1891. On the£ ow of water in open channels and pipes. Inst. Civil Eng. Ireland, 20, 161-207. Mikhail, E. M., Bethel, J. S., and McGlone, J. C., 2001. Introduction to Modern Photogrammetry. John Wiley and Sons Inc. (USA), 237 p. Manyoky, M., Theiler, P., Steudler, D., and Eisenbeiss, H., 2011. Unmanned aerial vehicle in cadastral applications. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3822, 57-62. Marshall, R., S. Ghafoor, M. Rogers, A. J. Kalyanapu, and T. T. Dullo, 2018. Performance Evaluation and Enhancements of a Flood Simulator Application for Heterogeneous HPC Environments, International Journal of Networking and Computing, 8(2), 387–407. Newman, P., Chandran-Ramesh, M., Cole, D., Cummins, M., Harrison, A., Posner, I., and Schroeter, D., 2011. Describing, navigating and recognising urban spaces-building an end-to-end SLAM system, In Robotics Research (pp. 237-253). Springer Berlin Heidelberg. Pilu, M., 1997. A direct method for stereo correspondence based on singular value decomposition. In Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on (pp. 261-266). IEEE Rantz, S. E.,1982. Measurement and computation of streamflow: volume 2, computation of discharge (No. 2175). USGPO. Rodriguez, J. F., Bombardelli, F. A., García, M. H., Frothingham, K. M., Rhoads, B. L., and Abad, J. D., 2004. High-resolution numerical simulation of flow through a highly sinuous river reach. Water Resources Management, 18(3), 177-199. Randall, D. A., 2006. The shallow water equations. Department of Atmospheric Science, Colorado State University, Fort Collins. Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference (pp. 517-524). ACM. Sibson, R., 1981. A brief description of natural neighbor interpolation. Interpreting multivariate data, 21-36. Sweet, H. R., Rosenthal, G., and Atwood, D. F., 1990. Water level monitoring-achievable accuracy and precision. Ground water and vadose zone monitoring: Philadelphia, American Society for Testing and Materials, Special Technical Publication, 1053, 178–192. Song, Z. L., and Zhang, J., 2010. Remote sensing image registration based on retrofitted SURF algorithm and trajectories generated from Lissajous figures, Geoscience and Remote Sensing Letters, IEEE, 7(3), 491-495. Suárez, J. C., Ontiveros, C., Smith, S., and Snape, S., 2005. Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry. Computers & Geosciences, 31(2), 253-262. Tomasi, C. and Kanade, T., 1991. Detection and Tracking of Point Features, Carnegie Mellon University Technical Report CMU-CS-91-132. Taiwan rovincial Soil and Water Conservation Bureau, and the Chinese Soil and Water Conservation Society, 1995. Soil conservation handbook, 1-46p. Turker, M., and Derenyi, E., 2000. GIS assisted change detection using remote sensing. Geocarto International, 15(1), 51-56. Tang, C. Y., Hsieh, P. C., and Lin, L. L., 2007. Application of FLO-2D and HEC-GeoRAS to the simulation of Na-Hu creek flooding by Typhoon Mindulle. Journal of Soil and Water Conservation, 39(1), 87-96. Van Hinsberg, W., Rijsdijk, M., and Witteveen, W., 2013. UAS for cadastral applications: testing suitability for boundary identification in urban areas. GIM Int, 27, 17-21. Weber, D., and Englund, E., 1992. Evaluation and comparison of spatial interpolators. Mathematical Geology, 24(4), 381-391. Wu, Y. H., 2009. River and confluence response to the construction and failure of Balin Dam, 1977-2008, Master thesis, National Taiwan University, Taipei, Taiwan, 8-10 p. Wang, G., 2011. GPS landslide monitoring: single base vs. network solutions—a case study based on the Puerto Rico and Virgin Islands permanent GPS network. Journal of Geodetic Science, 1(3), 191-203. Yu, J., and Hahn, H., 2010. Remote detection and monitoring of a water level using Narrow Band Channel. Journal of Information Science and Engineering, 26(1), 71–82. Zimmerman, D., Pavlik, C., Ruggles, A., and Armstrong, M. P., 1999. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology, 31(4), 375-390. Zhao, F., Huang, Q., and Gao, W., 2006. Image matching by normalized cross-correlation. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings (Vol. 2, pp. II–II). IEEE. 陳佳利、柯金源、劉啟稜、張光宗、邱福財、陳添寶、陳忠峰,2018。我們的島-濁水啟示,https://ourisland.pts.org.tw。 張世昇、張家銘、陳翊翔、林詠彬、張書瑋、張國鎮、陳俊杉,2018。機器學習於橋墩沖刷預測之應用. 土木水利, 45(5), 111-117. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71336 | - |
| dc.description.abstract | 極端氣候影響下,山區邊坡大量崩塌土砂隨著洪水流入蜿蜒河道中,產生崩塌及洪水災害,影響了周邊道路交通及村落居民生命安全。為了量化洪水災害所帶來的影響,相關研究利用數值地形模型進行洪水事件模擬,達到監測山區河道形貌並評估洪水氾濫影響。然而,監測分析過程中,易受限於水文資料缺漏、過時,甚至是多尺度空間整合應用問題。因此,本研究為解決水文及空間資料限制,提出以最小二乘法為基礎之水文資料補遺轉換模型及多尺度地形內插法,輔以現地調查資料測試方法之可行性。現地實驗透過無人飛行載具測繪技術,建構台灣新北市南勢溪河道地形,並由多個尺度地形模型及補遺的水文觀測數據完成該河道地形演化和洪水模擬分析。根據實驗分析獲得以下四個成果:首先,應用fast artifacts-free image interpolation (FAFI)內插法可保留內插前格網中資料特性,並運用該特性提升數值高程模型資料解析度;再者,本研究所提出imitated stream line interpolation (ISLI)內插法,針對蜿蜒河道斷面資料,能有效建構數值高程模型;第三,應用多尺度地形模型於洪水模擬測試中,優於十公尺解析度之數值高程模型能提供山區地形較準確之洪水模擬成果;最後,應用無人飛行載具測繪技術能彈性更新數值地形模型,並作為可靠的高解析度空間資料來源,進而輔助提升洪氾影響區域之辨識。綜合以上成果顯示,本研究不僅能夠克服多尺度空間資料應用限制,並有效地完成水文觀測資料補遺,實現高解析度山區蜿蜒河道形貌監測及洪氾模擬,提供災害管理相關單位作為穩定且具成本效益之監測整合方法。 | zh_TW |
| dc.description.abstract | Under extreme weather conditions, mountain landslides become a frequent phenomenon, resulting in an excessive deposition in meandering rivers. To realize the disaster impacts, the characterization of mountain morphology is utilized to simulate flood events, used to evaluate the disaster scope. However, in the processing, crucial observation data including hydrological values and spatial features are incomplete. This study proposes a way to supplement the missing data, integrate multi-scale terrain information, and efficiently carry out flood simulation. The meandering terrain of Nan-Shi River is surveyed with the application of Unmanned Aerial Vehicle (UAV) technique, so a high-resolution Digital Elevation Model (DEM) can be constructed. Based on the multi-scale DEM and hydrological data, a terrain analysis and flood simulations are conducted. According to field validations, this study has achieved four main goals. First, fast artifacts-free image interpolation (FAFI) is a more applicable method for improving DEM resolution. Second, imitated stream line interpolation (ISLI) is the most appropriate method for modeling the meandering river cross-sections. Third, the DEMs (<10 m resolution) support more accurate simulation outcomes in this study area. Finally, the up-to-date geo-morphology significantly influences the outcome of flood simulations. This study not only enables a complete approach that overcomes spatial limitations and surmounts hydrological data shortage but uses an integrated approach to offer a reliable and cost-efficient monitoring technique for river management authorities.
Keywords: high-resolution mapping technology; meandering terrain; Nan-Shi River; imitated stream line interpolation (ISLI); flooding simulation (Flood2D-GPU application) | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:02Z (GMT). No. of bitstreams: 1 ntu-108-D01521004-1.pdf: 12909150 bytes, checksum: bcb863d816bf3bdbf19468c19e77f087 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Contents IV Figure List VI Table List XII Chapter 1. Introduction 1 Chapter 2. Literature Review 7 2.1 Spatial Information Acquisition 7 2.1.1 Traditional Ground Surveys 7 2.1.2 Aerial Mapping 10 2.2 Spectral Image Processing and Terrain Interpolation Methods 16 2.2.1 Image Processing Techniques for Feature Classification and Matching 16 2.2.2 Grid Information and Interpolation Methods of the Digital Terrain 19 2.3 Hydrological Information Acquisition 24 2.3.1 Water Level Measurement 24 2.3.2 Discharge Measurement 26 2.3.3 Rating Curve of Water Level and Discharge 28 2.4 Flood Simulation Analysis 30 2.4.1 HEC-RAS Model 30 2.4.2 Flood Simulation Modeling with Two Dimension and Three Dimension 32 Chapter 3. Methodology 38 3.1 Geospatial Information Acquisitions and Interpolation Analysis 39 3.1.1 Acquisitions of the Images and Spatial Information 39 3.1.2 Spatial Data Interpolation 41 3.2 Addendum Processing to the Hydrological Data 48 3.3 Multi-dimensional Analysis of River Topography 53 3.3.1 One-dimension River Topography Analysis 53 3.3.2 River Scour and Deposition Evolution by Two-dimension Elevation Analysis 56 3.4 Flood Simulation Using Shallow Water Equations in the Flood2D-GPU model 58 Chapter 4. Validation 66 4.1 Study Area and Field Data Acquisitions 66 4.2 Preprocessing of the Field Survey Data 72 4.2.1 Preprocessing of the Topography Data 72 4.2.2 Analyses of Hydrological Data Pre-processing 82 4.3 Analysis of the River Morphology and Estimation of the Deposition Collapses 88 4.3.1 River Morphology in the Elevation Profile Analysis 88 4.3.2 Estimations of Deposition Volumes in Nan-Shi River and its Tributary 90 4.4 Simulations Analysis of a Previous Significant Flooding Event 92 4.4.1 Introduction of the Past Significant Flood Events 94 4.4.2 Evaluation Analysis of the Manning's n Values Calibration 96 4.4.3 Analysis of Flood Simulations Using Digital Elevation Models 97 Chapter 5. Conclusion and Future Works 121 Reference 125 | |
| dc.language.iso | en | |
| dc.subject | 高解析度地形測繪技術 | zh_TW |
| dc.subject | 蜿蜒河道地形 | zh_TW |
| dc.subject | 南勢溪 | zh_TW |
| dc.subject | 仿流線地形內插法 | zh_TW |
| dc.subject | 淹水模擬(應用Flood2D-GPU模型) | zh_TW |
| dc.subject | meandering terrain | en |
| dc.subject | high-resolution mapping technology | en |
| dc.subject | imitated stream line interpolation (ISLI) | en |
| dc.subject | Nan-Shi River | en |
| dc.subject | flooding simulation (Flood2D-GPU application) | en |
| dc.title | 以高解析度空間資訊輔助山區蜿蜒河道監測分析 | zh_TW |
| dc.title | The Monitoring of a Meandering River in Mountain Based on High-Resolution Spatial Information | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 趙鍵哲,徐百輝,卡艾瑋,游景雲,史天元 | |
| dc.subject.keyword | 高解析度地形測繪技術,蜿蜒河道地形,南勢溪,仿流線地形內插法,淹水模擬(應用Flood2D-GPU模型), | zh_TW |
| dc.subject.keyword | high-resolution mapping technology,meandering terrain,Nan-Shi River,imitated stream line interpolation (ISLI),flooding simulation (Flood2D-GPU application), | en |
| dc.relation.page | 133 | |
| dc.identifier.doi | 10.6342/NTU201900589 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-02-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-108-1.pdf Restricted Access | 12.61 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
