Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7132Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 鄭永銘(Yung-Ming Jeng) | |
| dc.contributor.author | Chung-Chieh Wang | en |
| dc.contributor.author | 王中傑 | zh_TW |
| dc.date.accessioned | 2021-05-17T15:59:47Z | - |
| dc.date.available | 2020-03-12 | |
| dc.date.available | 2021-05-17T15:59:47Z | - |
| dc.date.copyright | 2020-03-12 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-09 | |
| dc.identifier.citation | 1. Grignon DJ, Al-Ahmadie H, Algaba F et al. Infiltrating urothelial carcinoma. In Moch H, Humphrey PA, Ulbright TM, Reuter VE eds. WHO Classification of Tumours of the Urinary System and Male Genital Organs, 4th edition. Lyon, France: IARC, 2016; 81–98.
2. Reuter VE, Algaba F, Amin MB et al. Non-invasive urothelial lesions. In Moch H, Humphrey PA, Ulbright TM, Reuter VE eds. WHO Classification of Tumours of the Urinary System and Male Genital Organs, 4th edition. Lyon, France: IARC, 2016; 99–107. 3. Grignon DJ. Tumors of the urinary bladder. In Amin MB, Grignon DJ, Srigley JR, Eble JN. Urological Pathology. Philadelphia, PA: Lippincott Williams & Wilkins, 2014; 347–348, 360–364. 4. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Bladder Cancer (Version 1.2019). 5. Netto GJ. Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet? Nat Rev Urol. 2012; 9: 41–51. 6. Vinagre J, Almeida A, Pópulo H et al. Frequency of TERT promoter mutations in human cancers. Nat Commun 2013; 4: 2185. 7. Allory Y, Beukers W, Sagrera A et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur Urol 2014; 65: 360–366. 8. Hosen I, Rachakonda PS, Heidenreich B et al. Mutations in TERT promoter and FGFR3 and telomere length in bladder cancer. Int J Cancer 2015; 137: 1621–1629. 9. Cheng L, Davidson DD, Wang M et al. Telomerase reverse transcriptase (TERT) promoter mutation analysis of benign, malignant and reactive urothelial lesions reveals a subpopulation of inverted papilloma with immortalizing genetic change. Histopathology 2016; 69: 107–113. 10. Cheng L, Montironi R, Lopez-Beltran A. TERT promoter mutations occur frequently in urothelial papilloma and papillary urothelial neoplasm of low malignant potential. Eur Urol 2017; 71: 497–498. 11. Rodriguez Pena MDC, Tregnago AC, Eich ML et al. Spectrum of genetic mutations in de novo PUNLMP of the urinary bladder. Virchows Arch. 2017; 471: 761–767. 12. van Rhijn BW, Montironi R, Zwarthoff EC, Jöbsis AC, van der Kwast TH. Frequent FGFR3 mutations in urothelial papilloma. J Pathol 2002; 198: 245–251. 13. Lott S, Wang M, Zhang S et al. FGFR3 and TP53 mutation analysis in inverted urothelial papilloma: incidence and etiological considerations. Mod Pathol 2009; 22: 627–632. 14. Lamy A, Gobet F, Laurent M et al. Molecular profiling of bladder tumors based on the detection of FGFR3 and TP53 mutations. J Urol 2006; 176: 2686–2689. 15. Dodurga Y, Tataroglu C, Kesen Z, Satiroglu-Tufan NL. Incidence of fibroblast growth factor receptor 3 gene (FGFR3) A248C, S249C, G372C, and T375C mutations in bladder cancer. Genet Mol Res 2011; 10: 86–95. 16. Neuzillet Y, van Rhijn BW, Prigoda NL et al. FGFR3 mutations, but not FGFR3 expression and FGFR3 copy-number variations, are associated with favourable non-muscle invasive bladder cancer. Virchows Arch 2014; 465: 207–213. 17. van Rhijn BW, Vis AN, van der Kwast TH et al. Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol 2003; 21: 1912–1921. 18. Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 2005; 24: 5218–5225. 19. Castillo-Martin M, Collazo Lorduy A, Gladoun N, Hyun G, Cordon-Cardo C. H-RAS mutation is a key molecular feature of pediatric urothelial bladder cancer. A detailed report of three cases. J Pediatr Urol 2016; 12: 91.e1–7. 20. Robertson AG, Kim J, Al-Ahmadie H et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017; 171: 540–556.e25. 21. McDaniel AS, Zhai Y, Cho KR et al. HRAS mutations are frequent in inverted urothelial neoplasms. Hum Pathol 2014; 45: 1957–1965. 22. Isharwal S, Hu W, Sarungbam J et al. Genomic landscape of inverted urothelial papilloma and urothelial papilloma of the bladder. J Pathol 2019; 248: 260–265. 23. Sjödahl G, Lauss M, Lövgren K et al. A molecular taxonomy for urothelial carcinoma.Clin Cancer Res 2012; 18: 3377–3386. 24. Choi W, Porten S, Kim S et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014; 25: 152–165. 25. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014; 507: 315–322. 26. Damrauer JS, Hoadley KA, Chism DD et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A 2014; 111: 3110–3115. 27. Perou CM, Sørlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752. 28. Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003; 100: 8418–23. 29. Allred C, Miller K, Viale G, Brogi E, Isola J. Molecular testing for estrogen receptor, progesterone receptor, and HER2. In: Lakhani SR, Ellis IO, Schnitt SJ,Tan PH, van de Vijver MJ, editors. WHO classification of tumours of the breast. 4th ed. Lyon, France: IARC, 2012; 22–23. 30. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer (Version 3.2018). 31. Lerner SP, McConkey DJ, Hoadley KA et al. Bladder Cancer Molecular Taxonomy: Summary from a Consensus Meeting. Bladder Cancer 2016; 2: 37–47. 32. Kamoun A, de Reyniès A, Allory Y et al. The consensus molecular classification of muscle-invasive bladder cancer. BioRxiv 2018 Dec 10. doi: https://doi.org/10.1101/488460. 33. Dadhania V, Zhang M, Zhang L et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine. 2016; 12: 105–117. 34. Miyamoto H, Izumi K, Yao JL et al. GATA binding protein 3 is down-regulated in bladder cancer yet strong expression is an independent predictor of poor prognosis in invasive tumor. Hum Pathol 2012; 43: 2033–40. 35. Mohammed KH, Siddiqui MT, Cohen C. GATA3 immunohistochemical expression in invasive urothelial carcinoma. Urol Oncol. 2016; 34: 432.e9–432.e13. 36. Hodgson A, Liu SK, Vesprini D, Xu B, Downes MR. Basal-subtype bladder tumours show a 'hot' immunophenotype. Histopathology 2018; 73: 748–757. 37. Kollberg P, Chebil G, Eriksson P, Sjödahl G, Liedberg F. Molecular subtypes applied to a population-based modern cystectomy series do not predict cancer-specific survival. Urol Oncol 2019; 37: 791–799. 38. Inoue S, Mizushima T, Fujita K et al. GATA3 immunohistochemistry in urothelial carcinoma of the upper urinary tract as a urothelial marker and a prognosticator. Hum Pathol 2017; 64: 83–90. 39. Sikic D, Keck B, Wach S et al. Immunohistochemical subtyping using CK20 and CK5 can identify urothelial carcinomas of the upper urinary tract with a poor prognosis. PLoS One 2017 Jun 20; 12: e0179602. 40. Esrig D, Spruck CH 3rd, Nichols PW et al. p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol 1993; 143: 1389–1397. 41. Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ. Activating mutations for transformation by p53 produce a gene product that forms an hsc70–p53 complex with an altered half-life. Mol Cell Biol 1988; 8: 531–539. 42. Kraiss S, Spiess S, Reihsaus E, Montenarh M. Correlation of metabolic stability and altered quaternary structure of oncoprotein p53 with cell transformation. Exp Cell Res 1991; 192: 157–164. 43. Malats N, Bustos A, Nascimento CM et al. P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncol 2005; 6: 678–686. 44. Hodgson A, Xu B, Downes MR. P53 immunohistochemistry in high-grade urothelial carcinoma of the bladder is prognostically significant. Histopathology 2017; 71: 296–304. 45. Yemelyanova A, Vang R, Kshirsagar M et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol 2011; 24: 1248–1253. 46. Garg K, Leitao MM Jr, Wynveen CA et al. P53 overexpression in morphologically ambiguous endometrial carcinomas correlates with adverse clinical outcomes. Mod Pathol 2010; 23: 80–92. 47. Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathol 1987; 8: 138–140. 48. Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue – a review. Diagn Pathol 2014; 9: 221. 49. Köbel M, Piskorz AM, Lee S et al. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.J Pathol Clin Res 2016; 2: 247–258. 50. Dowsett M, Nielsen TO, A’Hern R et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer Working Group. J Natl Cancer Inst 2011; 103: 1–9. 51. Cheng L, Zhang S, MacLennan GT, Williamson SR, Lopez-Beltran A, Montironi R. Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol 2011; 42: 455–481. 52. Castillo-Martin M, Domingo-Domenech J, Karni-Schmidt O, Matos T, Cordon-Cardo C. Molecular pathways of urothelial development and bladder tumorigenesis. Urol Oncol 2010; 28: 401–408. 53. Knowles MA. Molecular pathogenesis of bladder cancer. Int J Clin Oncol 2008; 13: 287–297. 54. Lindgren D, Frigyesi A, Gudjonsson S et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res 2010; 70: 3463–3472. 55. Rachakonda PS, Hosen I, de Verdier PJ et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci U S A 2013; 110: 17426–17431. 56. Tuna B, Yörükoglu K, Düzcan E et al. Histologic grading of urothelial papillary neoplasms: impact of combined grading (two-numbered grading system) on reproducibility. Virchows Arch 2011; 458: 659–664. 57. Sharma P, Kini H, Pai RR, Sahu KK, Kini J. Study of the reproducibility of the 2004 World Health Organization classification of urothelial neoplasms. Indian J Pathol Microbiol 2015; 58: 59–61. 58. Liu H, Shi J, Wilkerson ML, Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol 2012; 138: 57–64. 59. Miettinen M, McCue PA, Sarlomo-Rikala M et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol 2014; 38: 13–22. 60. Sjödahl G, Eriksson P, Liedberg F, Höglund M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol 2017; 242: 113–125. 61. Scott GA, Laughlin TS, Rothberg PG. Mutations of the TERT promoter are common in basal cell carcinoma and squamous cell carcinoma. Mod Pathol 2014; 27: 516–523. 62. Logié A, Dunois-Lardé C, Rosty C et al. Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. Hum Mol Genet 2005; 14: 1153–1160. 63. Jang EK, Song DE, Sim SY et al. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid 2014; 24: 1275–1281. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7132 | - |
| dc.description.abstract | 膀胱泌尿腫瘤是泌尿科的常見疾病,而其治療主要依據為腫瘤分期與形態學上的分化程度。近期分子病理研究發現了不少重要的腫瘤生物標記,但它們尚未被整合到臨床的治療指引中。本篇論文包含兩部分,分別闡述相關標記於兩類膀胱泌尿腫瘤中的生物學意義:早期的低度非侵襲性泌尿上皮腫瘤,以及晚期的肌肉侵犯性膀胱癌(MIBC)。
在第一部分,我們在低度非侵襲性泌尿上皮腫瘤檢測TERT、FGFR3及HRAS三種基因的突變狀態,並分析其預後意義。TERT基因之啟動子突變在膀胱癌頗為常見,但是在低惡性度乳突狀泌尿上皮腫瘤(PUNLMP)的相關資料並不多。本研究中,我們收集了21例良性之倒生性乳突瘤、30例PUNLMP,以及34例低度非侵襲性乳突狀泌尿上皮癌(NIPUC)。TERT基因之啟動子突變出現於10 (33%)例之PUNLMP與17 (50%)例之低度NIPUC,但未出現於倒生性乳突瘤。相對於倒生性乳突瘤,PUNLMP與低度NIPUC較常出現FGFR3基因之突變(p = 0.009),HRAS基因突變則較為少見(p < 0.001)。在預後方面,PUNLMP病例有TERT啟動子突變者較容易復發(p = 0.024),但是低度NIPUC並無此現象(p = 0.530)。此外,PUNLMP病例有TERT啟動子突變者,其復發率與低度NIPUC無顯著差異(p = 0.487)。 在第二部分,我們分析了GATA3、CK20、CK5/6及p53在MIBC的表現與其生物學意義。近期基因研究將MIBC區分為數種子分類,而上述之免疫組織化學染色(IHC)標記與這些子分類有關。其中,GATA3與CK5/6分別被視為管腔型與類基底-鱗狀型的代表性標記;p53染色常被用於代替TP53基因突變檢測,而傳統上一般將細胞核染色比例高者視為異常。本研究共收集了91名MIBC病人的膀胱全切除術組織檢體。在這些病例中,GATA3表現量較低及CK20陰性者,其Ki-67增殖指數較高(p值分別為0.006與0.002)。相對地,CK5/6呈廣泛性表現者,Ki-67增殖指數較高(p = 0.001)。P53染色則有三種類型與高Ki-67指數相關:完全陰性、廣泛的細胞核強染色,以及廣泛的細胞質強染色。此外,CK20與CK5/6的染色結果通常呈現互補關係,但91例中的13例(14.29%)同時有廣泛的GATA3與CK5/6表現。在78名未接受術前化學治療的病人裡,GATA3表現量較低者於單變項與多變項分析均有顯著較高的復發率(p值分別為0.008與0.002)。CK20、CK5/6及p53的表現則與預後無關。 總結來說,根據我們的研究結果,TERT基因的啟動子突變可做為PUNLMP病人的預後標記。在MIBC病患,GATA3的表現量則可做為膀胱切除術後的復發危險性指標。此外,由Ki-67增殖指數的關聯性來看,以前述三種染色類型做為判斷p53染色異常的標準,應比傳統上的核染色比例準則更佳。 | zh_TW |
| dc.description.abstract | Clinical management of bladder urothelial neoplasm depends mainly on the tumor stage and grade. Recent advances in molecular pathology discovered several essential biomarkers, and their value in clinical application warrants investigation. In our study, we focused on the relevant biomarkers in two separate fields of bladder tumors: the early low-grade noninvasive papillary urothelial neoplasm, and the advanced muscle-invasive bladder cancer (MIBC).
In the first part, we investigated the mutation status of the TERT promoter, FGFR3 gene, and HRAS gene in low-grade papillary urothelial neoplasms and evaluated their prognostic significance. Mutations in the promoter region of the TERT gene have been frequently found in urothelial carcinoma of the urinary bladder, but related data for papillary urothelial neoplasm of low malignant potential (PUNLMP) are limited. In our study, we included 21 cases of inverted papillomas, 30 PUNLMPs, and 34 low-grade noninvasive papillary urothelial carcinomas (NIPUCs). TERT promoter mutations were observed in 10 (33%) PUNLMPs and 17 (50%) low-grade NIPUCs, but not in any inverted papilloma. FGFR3 mutations were more frequently observed in PUNLMP and low-grade NIPUC than in inverted papillomas (p = 0.009), whereas the opposite trend was noted for HRAS mutations (p < 0.001). Regarding the clinical outcome, TERT promoter mutation was associated with a higher recurrence rate in PUNLMP (p = 0.024) but not in low-grade NIPUC (p = 0.530). Notably, PUNLMP cases with TERT promoter mutations had a similar recurrence rate to that in low-grade NIPUC cases (p = 0.487). Our results suggest that the status of the TERT promoter mutation may serve as a biomarker of prognostic stratification in patients with PUNLMP. In the second part, we investigated the biological and prognostic significance of GATA3, cytokeratin (CK) 20, CK5/6 and p53 in MIBCs from 91 patients who underwent radical cystectomy. Genetic profiling studies on muscle-invasive bladder cancers (MIBCs) have discovered several subtypes with different biological characteristics, and these markers were found to be associated with the molecular subtypes. According to our results, high Ki-67 indices were associated with negative CK20 (p = 0.002) and diffuse CK5/6 (p = 0.001) staining. By contrast, tumors with diffuse GATA3 expression had low Ki-67 index (p = 0.006). Regarding p53, three staining patterns were associated with a high Ki-67 index: (1) complete absence, (2) diffusely strong nuclear reactivity, and (3) diffusely strong cytoplasmic staining (p < 0.001 compared with other patterns). CK5/6 and CK20 expression was typically present in a reciprocal fashion; however, diffuse GATA3 and CK5/6 coexpression was observed in 13 (14.29%) cases. Among 78 chemotherapy-naïve patients, low GATA3 staining was associated with worse recurrence-free survival in both univariate (p = 0.008) and multivariate analyses (p = 0.002). CK20, CK5/6, or p53 expressionwas not associated with clinical outcome. Based on our results, IHC staining for GATA3 may help risk stratification in patients with MIBC receiving radical cystectomy. In addition, the differences in Ki-67 indices suggested that aberrant p53 expression was better defined by the three aforementioned patterns, rather than percentage of nuclear staining alone. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T15:59:47Z (GMT). No. of bitstreams: 1 ntu-109-D00444003-1.pdf: 3402623 bytes, checksum: 492757d81ade9eee727c119e9c0a7932 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract v 1. Introduction 1 1.1 Classification of urothelial neoplasm of the urinary bladder 1 1.2 Clinical management on different categories of the bladder tumors 1 1.3 Current problem in management of PUNLMP 3 1.4 Common gene mutations in low-grade urothelial neoplasms 3 1.4.1 TERT promoter mutations 4 1.4.2 FGFR3 mutations 5 1.4.3 HRAS mutations 6 1.5 Molecular classification of MIBC 7 1.5.1 Lund and MDA Classification Systems 7 1.5.2 Consensus Molecular Classification System 8 1.5.3 Possible surrogate markers for molecular subtypes of MIBC 9 1.6 TP53 mutation and p53 IHC staining 10 1.7 Aims of our study 11 2. Materials and Methods 12 2.1 Patients and specimens 12 2.2 DNA extraction and sequencing 13 2.3 IHC staining 14 2.4 Clinicopathological correlation and survival analysis 15 3. Results 17 3.1 Mutation status in each histological entity of low-grade noninvasive papillary urothelial neoplasms 17 3.2 Prognostic significance of the mutation status in PUNLMP and low-grade NIPUC 18 3.3 Prognostic grouping by combination of histological classification and mutation status of TERT promoter 19 3.4 Demographic and clinicopathological data regarding patients with MIBC 20 3.5 Association among GATA3, CK20 and CK5/6 staining in MIBC 20 3.6 Association of Ki-67 index with GATA3, CK20, CK5/6 and p53 expression in MIBC 21 3.7 Intratumoral heterogeneity in MIBC 23 3.8 Prognostic significance of the IHC markers in MIBC 24 4. Discussion 25 4.1 Biological significance of TERT promoter mutation in papillary urothelial neoplasm of low malignant potential 25 4.2 Biological significance of GATA3, cytokeratin 20, cytokeratin 5/6 and p53 expression in MIBC 29 5. Conclusion 33 Reference 34 | |
| dc.language.iso | en | |
| dc.title | TERT啟動子突變與GATA3、CK20、CK5/6及p53之表現於膀胱泌尿上皮腫瘤之生物學意義 | zh_TW |
| dc.title | Biological Significance of TERT Promoter Mutation and Expression of GATA3, CK20, CK5/6 and P53 in Urothelial Neoplasm of the Urinary Bladder | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 潘競成(Chin-Chen Pan),蒲永孝(Yeong-Shiau Pu),黃昭淵(Chao-Yuan Huang),成佳憲(Jason Chia-Hsien Cheng) | |
| dc.subject.keyword | 膀胱癌,泌尿上皮腫瘤,TERT啟動子,GATA3,CK20,CK5/6,p53, | zh_TW |
| dc.subject.keyword | Bladder cancer,urothelial neoplasm,TERT promoter,GATA3,cytokeratin 20,cytokeratin 5/6,p53, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202000056 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-01-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| Appears in Collections: | 病理學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-109-1.pdf | 3.32 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
