請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71316完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童世煌(Shih-Huang Tung) | |
| dc.contributor.author | Chia-Ju Chang | en |
| dc.contributor.author | 張加儒 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:04:34Z | - |
| dc.date.available | 2023-07-26 | |
| dc.date.copyright | 2018-07-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-23 | |
| dc.identifier.citation | 1. Tyagi, V. V., Kaushik, S. C., Tyagi, S. K., & Akiyama, T. (2011). Development of phase change materials based microencapsulated technology for buildings: a review. Renewable and sustainable energy reviews, 15(2), 1373-1391.
2. Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of microencapsulation, 27(3), 187-197. 3. Ghosh, S. K. (Ed.). (2006). Functional coatings: by polymer microencapsulation. John Wiley & Sons. 4. Chen, Z., & Fang, G. (2011). Preparation and heat transfer characteristics of microencapsulated phase change material slurry: a review. Renewable and Sustainable Energy Reviews, 15(9), 4624-4632. 5. Sabbah, R., Farid, M. M., & Al-Hallaj, S. (2009). Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study. Applied Thermal Engineering, 29(2-3), 445-454. 6. Zhang, P., Ma, Z. W., & Wang, R. Z. (2010). An overview of phase change material slurries: MPCS and CHS. Renewable and Sustainable Energy Reviews, 14(2), 598-614. 7. Salunkhe, P. B., & Shembekar, P. S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews, 16(8), 5603-5616. 8. Kwak, K., & Kim, C. (2005). Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology Journal, 17(2), 35-40. 9. Azari, A., Kalbasi, M., & Rahimi, M. (2013). Numerical study on the laminar convective heat transfer of alumina/water nanofluids. Journal of Thermophysics and Heat Transfer, 27(1), 170-173. 10. Boh, B., & Šumiga, B. (2008). Microencapsulation technology and its applications in building construction materials Tehnologija mikrokapsuliranja in njena uporaba v gradbenih materialih. RMZ–Materials and Geoenvironment, 55(3), 329-344. 11. Zhao, C. Y., & Zhang, G. H. (2011). Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renewable and Sustainable Energy Reviews, 15(8), 3813-3832. 12. Jamekhorshid, A., Sadrameli, S. M., & Farid, M. (2014). A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31, 531-542. 13. 張鴻奇. (2001). 微膠囊技術之發展及應用回顧. 化工資訊, 15(8), 28-35. 14. e Silva, J. P. S., & Freitasb, A. C. (2014). Immobilization and Microencapsulation of Probiotics. Probiotic Bacteria: Fundamentals, Therapy, and Technological Aspects, 171. 15. Luzzi, L. A. (1970). Microencapsulation. Journal of pharmaceutical sciences, 59(10), 1367-1376. 16. J.A. Herbig. (1967) Microencapsulation (2nd Ed.), in Kirk-Othmer Encyclopedia of Chemical Technology, 13, John Wiley & Sons, New York 17. Bungenberg de Jong, H. G. (1949). Complex colloid systems. Colloid science, 2, 335-432. 18. Wurster, D. E. (1959). Air‐suspension technique of coating drug particles. A preliminary report. Journal of Pharmaceutical Sciences, 48(8), 451-454. 19. Khanna, S. C., & Speiser, P. (1969). Epoxy resin beads as a pharmaceutical dosage form I: Method of preparation. Journal of pharmaceutical sciences, 58(9), 1114-1117. 20. Arshady, R. (1989). Microspheres and microcapsules: A survey of manufacturing techniques. Part 1: Suspension cross‐linking. Polymer Engineering & Science, 29(24), 1746-1758. 21. Arshady, R. (1990). Microspheres and microcapsules, a survey of manufacturing techniques Part II: Coacervation. Polymer Engineering & Science, 30(15), 905-914. 22. Arshady, R. (1990). Microspheres and microcapsules, a survey of manufacturing techniques: Part III: Solvent evaporation. Polymer Engineering & Science, 30(15), 915-924. 23. Dubey, R. (2009). Microencapsulation technology and applications. Defence Science Journal, 59(1), 82. 24. Watnasirichaikul, S., Rades, T., Tucker, I. G., & Davies, N. M. (2002). Effects of formulation variables on characteristics of poly (ethylcyanoacrylate) nanocapsules prepared from w/o microemulsions. International journal of pharmaceutics, 235(1-2), 237-246. 25. Damgé, C., Michel, C., Aprahamian, M., & Couvreur, P. (1988). New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes, 37(2), 246-251. 26. Damge, C., Michel, C., Aprahamian, M., Couvreur, P., & Devissaguet, J. P. (1990). Nanocapsules as carriers for oral peptide delivery. Journal of Controlled Release, 13(2-3), 233-239. 27. Liu, J., Xia, H., Xue, D., & Lu, L. (2009). Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. Journal of the American Chemical Society, 131(34), 12086-12087. 28. Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P., & Speiser, P. (1979). Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. Journal of pharmacy and pharmacology, 31(1), 331-332. 29. Sukhorukov, G. B., Antipov, A. A., Voigt, A., Donath, E., & Möhwald, H. (2001). pH‐controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. Macromolecular Rapid Communications, 22(1), 44-46. 30. Tiarks, F., Landfester, K., & Antonietti, M. (2001). Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir, 17(3), 908-918. 31. Chen, Y., Chen, H., Zeng, D., Tian, Y., Chen, F., Feng, J., & Shi, J. (2010). Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS nano, 4(10), 6001-6013. 32. Piao, Y., Kim, J., Na, H. B., Kim, D., Baek, J. S., Ko, M. K., ... & Hyeon, T. (2008). Wrap–bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nature materials, 7(3), 242. 33. Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International journal of pharmaceutics, 385(1-2), 113-142. 34. R. T. Maleeny, Spray dried perfumes, Soap & Chemical Specialties, 1958, 34, 137, 139, 141, 145. 35. Green, B. K., & Lowell, S. (1957). U.S. Patent No. 2,800,457. Washington, DC: U.S. Patent and Trademark Office. 36. Green, B. K. (1957). U.S. Patent No. 2,800,458. Washington, DC: U.S. Patent and Trademark Office. 37. Fergason, J. L. (1985). Polymer encapsulated nematic liquid crystals for display and light control applications. In SID Int. Symp. Dig. (pp. 268-270). 38. Orsino, J. A., Herman, D. F., & Brancato, J. J. (1964). U.S. Patent No. 3,121,698. Washington, DC: U.S. Patent and Trademark Office. 39. Orsino, J. A., & Mandel, C. E. (1964). U.S. Patent No. 3,121,658. Washington, DC: U.S. Patent and Trademark Office. 40. Orsino, J. A., Herman, D. F., & Brancato, J. J. (1967). U.S. Patent No. 3,300,329. Washington, DC: U.S. Patent and Trademark Office. 41. Langer, G., & Yamate, G. (1969). Encapsulation of liquid and solid aerosol particles to form dry powders. Journal of Colloid and Interface Science, 29(3), 450-455. 42. Anderson, C. E. (1963). Microencapsulation. MIR Management Reports, Boston, Massachusetts. 43. Somerville, J. G. R. (1962). U.S. Patent No. 3,015,128. Washington, DC: U.S. Patent and Trademark Office. 44. Baer, C. A., & Steeves, R. W. (1958). U.S. Patent No. 2,846,971. Washington, DC: U.S. Patent and Trademark Office. 45. Wurster, D. E. (1953). U.S. Patent No. 2,648,609. Washington, DC: U.S. Patent and Trademark Office. 46. Wurster, D. E. (1957). U.S. Patent No. 2,799,241. Washington, DC: U.S. Patent and Trademark Office. 47. Yin, T., Rong, M. Z., Zhang, M. Q., & Yang, G. C. (2007). Self-healing epoxy composites–preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology, 67(2), 201-212. 48. Sanada, K., Yasuda, I., & Shindo, Y. (2006). Transverse tensile strength of unidirectional fibre-reinforced polymers and self-healing of interfacial debonding. Plastics, rubber and composites, 35(2), 67-72. 49. Jones, A. S., Rule, J. D., Moore, J. S., Sottos, N. R., & White, S. R. (2007). Life extension of self-healing polymers with rapidly growing fatigue cracks. Journal of the Royal Society Interface, 4(13), 395-403. 50. Brown, E. N., White, S. R., & Sottos, N. R. (2005). Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Composites Science and Technology, 65(15-16), 2474-2480. 51. Rule, J. D., Sottos, N. R., & White, S. R. (2007). Effect of microcapsule size on the performance of self-healing polymers. Polymer, 48(12), 3520-3529. 52. Kessler, M. R., Sottos, N. R., & White, S. R. (2003). Self-healing structural composite materials. Composites Part A: applied science and manufacturing, 34(8), 743-753. 53. Huang, M., & Yang, J. (2011). Facile microencapsulation of HDI for self-healing anticorrosion coatings. Journal of Materials Chemistry, 21(30), 11123-11130. 54. McIlroy, D. A., Blaiszik, B. J., Caruso, M. M., White, S. R., Moore, J. S., & Sottos, N. R. (2010). Microencapsulation of a reactive liquid-phase amine for self-healing epoxy composites. Macromolecules, 43(4), 1855-1859. 55. Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of controlled release, 100(1), 5-28. 56. Singh, M. N., Hemant, K. S. Y., Ram, M., & Shivakumar, H. G. (2010). Microencapsulation: A promising technique for controlled drug delivery. Research in pharmaceutical sciences, 5(2), 65. 57. Kumar, M. N. V. R. (2000). Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci, 3(2), 234-258. 58. Wang, W., Liu, X., Xie, Y., Zhang, H. A., Yu, W., Xiong, Y., ... & Ma, X. (2006). Microencapsulation using natural polysaccharides for drug delivery and cell implantation. Journal of Materials Chemistry, 16(32), 3252-3267. 59. Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397. 60. Lorenzo-Lamosa, M. L., Remunan-Lopez, C., Vila-Jato, J. L., & Alonso, M. J. (1998). Design of microencapsulated chitosan microspheres for colonic drug delivery. Journal of controlled release, 52(1-2), 109-118. 61. Müller, R. H., MaÈder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics, 50(1), 161-177. 62. Seager, H. (1998). Drug‐delivery products and the Zydis fast‐dissolving dosage form. Journal of pharmacy and pharmacology, 50(4), 375-382. 63. Jin, F. L., Li, X., & Park, S. J. (2015). Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11. 64. Hodgkin, J. H., Simon, G. P., & Varley, R. J. (1998). Thermoplastic toughening of epoxy resins: a critical review. Polymers for advanced technologies, 9(1), 3-10. 65. Jeon, H., Park, J., & Shon, M. (2013). Corrosion protection by epoxy coating containing multi-walled carbon nanotubes. Journal of Industrial and Engineering Chemistry, 19(3), 849-853. 66. Das, G., Kalita, R. D., Deka, H., Buragohain, A. K., & Karak, N. (2013). Biodegradation, cytocompatability and performance studies of vegetable oil based hyperbranched polyurethane modified biocompatible sulfonated epoxy resin/clay nanocomposites. Progress in Organic Coatings, 76(7-8), 1103-1111. 67. Lee, S. B., Lee, H. J., & Hong, I. K. (2012). Diluent filler particle size effect for thermal stability of epoxy type resin. Journal of Industrial and Engineering Chemistry, 18(2), 635-641. 68. Kumar, K. S., Biju, R., & Nair, C. R. (2013). Progress in shape memory epoxy resins. Reactive and Functional Polymers, 73(2), 421-430. 69. Mathew, D., Reghunadhan Nair, C. P., & Ninan, K. N. (1999). Bisphenol A dicyanate–novolac epoxy blend: cure characteristics, physical and mechanical properties, and application in composites. Journal of Applied Polymer Science, 74(7), 1675-1685. 70. Talo, A., Passiniemi, P., Forsen, O., & Yläsaari, S. (1997). Polyaniline/epoxy coatings with good anti-corrosion properties. Synthetic Metals, 85(1-3), 1333-1334. 71. Kwak, G. H., Park, S. J., & Lee, J. R. (2000). Thermal stability and mechanical behavior of cycloaliphatic–DGEBA epoxy blend system initiated by cationic latent catalyst. Journal of applied polymer science, 78(2), 290-297. 72. Fu, S. Y., Pan, Q. Y., Huang, C. J., Yang, G., Liu, X. H., Ye, L., & Mai, Y. W. (2006). A preliminary study on cryogenic mechanical properties of epoxy blend matrices and SiO2/epoxy nanocomposites. In Key Engineering Materials (Vol. 312, pp. 211-216). Trans Tech Publications. 73. Zhou, H. S., Song, X. X., & Xu, S. A. (2014). Mechanical and thermal properties of novel rubber‐toughened epoxy blend prepared by in situ pre‐crosslinking. Journal of Applied Polymer Science, 131(22). 74. Denq, B. L., Hu, Y. S., Chen, L. W., Chiu, W. Y., & Wu, T. R. (1999). The curing reaction and physical properties of DGEBA/DETA epoxy resin blended with propyl ester phosphazene. Journal of applied polymer science, 74(1), 229-237. 75. Jeffrey Gotro (2013) The Winding Road to Renewable Thermoset Polymers Part 5: Epoxies, from https://polymerinnovationblog.com/the-winding-road-to-renewable-thermoset-polymers-part-5-epoxies/ 76. Jin, F. L., Ma, C. J., & Park, S. J. (2011). Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Materials Science and Engineering: A, 528(29-30), 8517-8522. 77. Jin, F. L., & Park, S. J. (2006). Thermal properties and toughness performance of hyperbranched‐polyimide‐modified epoxy resins. Journal of Polymer Science Part B: Polymer Physics, 44(23), 3348-3356. 78. Licari, J. J., & Swanson, D. W. (2011). Adhesives technology for electronic applications: materials, processing, reliability. William Andrew. 79. Xu, H. J., Jin, F. L., & Park, S. J. (2009). Synthesis of a novel phosphorus-containing flame retardant for epoxy resins. Bulletin of the Korean Chemical Society, 30(11), 2643-2646. 80. Riccardi, C. C., & Williams, R. J. (1986). A kinetic scheme for an amine‐epoxy reaction with simultaneous etherification. Journal of Applied Polymer Science, 32(2), 3445-3456. 81. Ferdosian, F., Ebrahimi, M., & Jannesari, A. (2013). Curing kinetics of solid epoxy/DDM/nanoclay: Isoconversional models versus fitting model. Thermochimica acta, 568, 67-73. 82. Frank, K., Childers, C., Dutta, D., Gidley, D., Jackson, M., Ward, S., ... & Wiggins, J. (2013). Fluid uptake behavior of multifunctional epoxy blends. Polymer, 54(1), 403-410. 83. Bourne, L. B., Milner, F. J. M., & Alberman, K. B. (1959). Health problems of epoxy resins and amine-curing agents. Occupational and Environmental Medicine, 16(2), 81-97. 84. Fan, M., Liu, J., Li, X., Cheng, J., & Zhang, J. (2013). Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system. Thermochimica acta, 554, 39-47. 85. Park, S. J., & Jin, F. L. (2004). Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride. Polymer degradation and stability, 86(3), 515-520. 86. Konuray, A. O., Fernández-Francos, X., & Ramis, X. (2017). Analysis of the reaction mechanism of the thiol–epoxy addition initiated by nucleophilic tertiary amines. Polymer Chemistry, 8(38), 5934-5947. 87. Hao, Y., Liu, F., & Han, E. H. (2013). Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers. Progress in Organic Coatings, 76(4), 571-580. 88. Katariya, M. N., Jana, A. K., & Parikh, P. A. (2013). Corrosion inhibition effectiveness of zeolite ZSM-5 coating on mild steel against various organic acids and its antimicrobial activity. Journal of industrial and Engineering Chemistry, 19(1), 286-291. 89. Gergely, A., Bertóti, I., Török, T., Pfeifer, É., & Kálmán, E. (2013). Corrosion protection with zinc-rich epoxy paint coatings embedded with various amounts of highly dispersed polypyrrole-deposited alumina monohydrate particles. Progress in Organic Coatings, 76(1), 17-32. 90. Nguyen, H. V., Andreassen, E., Kristiansen, H., Johannessen, R., Hoivik, N., & Aasmundtveit, K. E. (2013). Rheological characterization of a novel isotropic conductive adhesive–Epoxy filled with metal-coated polymer spheres. Materials & Design, 46, 784-793. 91. Park, C. H., Lee, S. W., Park, J. W., & Kim, H. J. (2013). Preparation and characterization of dual curable adhesives containing epoxy and acrylate functionalities. Reactive and Functional Polymers, 73(4), 641-646. 92. Liu, Y., Yang, G., Xiao, H. M., Feng, Q. P., & Fu, S. Y. (2013). Mechanical properties of cryogenic epoxy adhesives: Effects of mixed curing agent content. International Journal of Adhesion and Adhesives, 41, 113-118. 93. Kaboorani, A., & Riedl, B. (2012). Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives. Journal of Industrial and Engineering Chemistry, 18(3), 1076-1081. 94. Jin, H., Miller, G. M., Pety, S. J., Griffin, A. S., Stradley, D. S., Roach, D., ... & White, S. R. (2013). Fracture behavior of a self-healing, toughened epoxy adhesive. International Journal of Adhesion and Adhesives, 44, 157-165. 95. Chand, N., & Nigrawal, A. (2008). Development and electrical conductivity behavior of copper‐powder‐filled‐epoxy graded composites. Journal of applied polymer science, 109(4), 2384-2387. 96. Ho, T. H., & Wang, C. S. (1996). Modification of epoxy resins with polysiloxane thermoplastic polyurethane for electronic encapsulation: 1. Polymer, 37(13), 2733-2742. 97. Lin, L. L., Ho, T. H., & Wang, C. S. (1997). Synthesis of novel trifunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. Polymer, 38(8). 98. Suh, S. W., Kim, J. J., Kim, S. H., & Park, B. K. (2012). Effect of PI film surface on printing of Pd (II) catalytic ink for electroless copper plating in the printed electronics. Journal of Industrial and Engineering Chemistry, 18(1), 290-294. 99. Teh, P. L., Jaafar, M., Akil, H. M., Seetharamu, K. N., Wagiman, A. N. R., & Beh, K. S. (2008). Thermal and mechanical properties of particulate fillers filled epoxy composites for electronic packaging application. Polymers for Advanced Technologies, 19(4), 308-315. 100. Zeeman, R., Dijkstra, P. J., van Wachem, P. B., van Luyn, M. J., Hendriks, M., Cahalan, P. T., & Feijen, J. (1999). Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials, 20(10), 921-931. 101. Di Prima, M. A., Gall, K., McDowell, D. L., Guldberg, R., Lin, A., Sanderson, T., ... & Arzberger, S. C. (2010). Cyclic compression behavior of epoxy shape memory polymer foam. Mechanics of Materials, 42(4), 405-416. 102. Di Prima, M., Gall, K., McDowell, D. L., Guldberg, R., Lin, A., Sanderson, T., ... & Arzberger, S. C. (2010). Deformation of epoxy shape memory polymer foam. Part I: Experiments and macroscale constitutive modeling. Mechanics of Materials, 42(3), 304-314. 103. Azeez, A. A., Rhee, K. Y., Park, S. J., & Hui, D. (2013). Epoxy clay nanocomposites–processing, properties and applications: A review. Composites Part B: Engineering, 45(1), 308-320. 104. Kandare, E., Kandola, B. K., & Myler, P. (2013). Evaluating the influence of varied fire-retardant surface coatings on post-heat flexural properties of glass/epoxy composites. Fire safety journal, 58, 112-120. 105. Zhang, J., & Xie, X. (2011). Influence of addition of silica particles on reaction-induced phase separation and properties of epoxy/PEI blends. Composites Part B: Engineering, 42(8), 2163-2169. 106. Tan, Y., Shao, Z. B., Chen, X. F., Long, J. W., Chen, L., & Wang, Y. Z. (2015). Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS applied materials & interfaces, 7(32), 17919-17928. 107. Jin, F. L., Li, X., & Park, S. J. (2015). Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11. 108. Kornmann, X., Lindberg, H., & Berglund, L. A. (2001). Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer, 42(4), 1303-1310. 109. Gravalos, J., Calvo, I., Mieres, J., Cubillo, J., Borreguero, A. M., Carmona, M., ... & Valverde, J. L. (2009). Procedure for microencapsulation of phase change materials by spray drying. Patent EP2119498 (A1). 110. Borreguero, A. M., Valverde, J. L., Rodríguez, J. F., Barber, A. H., Cubillo, J. J., & Carmona, M. (2011). Synthesis and characterization of microcapsules containing Rubitherm® RT27 obtained by spray drying. Chemical Engineering Journal, 166(1), 384-390. 111. Li, M., Rouaud, O., & Poncelet, D. (2008). Microencapsulation by solvent evaporation: State of the art for process engineering approaches. International Journal of pharmaceutics, 363(1-2), 26-39. 112. Mu, L., & Feng, S. S. (2002). Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol®). Journal of Controlled Release, 80(1-3), 129-144. 113. Arshady, R. (1992). Suspension, emulsion, and dispersion polymerization: A methodological survey. Colloid and polymer science, 270(8), 717-732. 114. Yin, D., Ma, L., Liu, J., & Zhang, Q. (2014). Pickering emulsion: a novel template for microencapsulated phase change materials with polymer–silica hybrid shell. Energy, 64, 575-581. 115. Zhang, K., Chen, H., Chen, X., Chen, Z., Cui, Z., & Yang, B. (2003). Monodisperse silica‐polymer core‐shell microspheres via surface grafting and emulsion polymerization. Macromolecular materials and engineering, 288(4), 380-385. 116. Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Lyman, C. E., Lifshin, E., ... & Michael, J. R. (2003). Generation of X-rays in the SEM specimen. In Scanning Electron Microscopy and X-Ray Microanalysis (pp. 271-296). Springer, Boston, MA. 117. Domańska, U., Pobudkowska, A., & Rogalski, M. (2004). Solubility of imidazoles, benzimidazoles, and phenylimidazoles in dichloromethane, 1-chlorobutane, toluene, and 2-nitrotoluene. Journal of Chemical & Engineering Data, 49(4), 1082-1090. 118. Reichardt, C., & Welton, T. (2011). Solvents and solvent effects in organic chemistry. John Wiley & Sons. 119. Ham, Y. R., Lee, D. H., Kim, S. H., Shin, Y. J., Yang, M., & Shin, J. S. (2010). Microencapsulation of imidazole curing agent for epoxy resin. Journal of Industrial and Engineering Chemistry, 16(5), 728-733. 120. Shin, M. J., Shin, Y. J., Hwang, S. W., & Shin, J. S. (2013). Microencapsulation of imidazole curing agent by solvent evaporation method using W/O/W emulsion. Journal of Applied Polymer Science, 129(3), 1036-1044. 121. Lee, D. H., Yang, M., Kim, S. H., Shin, M. J., & Shin, J. S. (2011). Microencapsulation of imidazole curing agents by spray‐drying method. Journal of Applied Polymer Science, 122(2), 782-788. 122. Shin, M. J., Shin, Y. J., & Shin, J. S. (2018). Latent imidazole curing agents by microencapsulation with copolymers. Particulate Science and Technology, 36(1), 112-116. 123. Li, Q., Kim, N. H., Hui, D., & Lee, J. H. (2013). Effects of dual component microcapsules of resin and curing agent on the self-healing efficiency of epoxy. Composites Part B: Engineering, 55, 79-85. 124. Rosa, N., Martins, G. V., Bastos, M. M., Gois, J. R., Coelho, J. F., Marques, J., ... & Magalhães, F. D. (2015). Preparation of robust polyamide microcapsules by interfacial polycondensation of p-phenylenediamine and sebacoyl chloride and plasticization with oleic acid. Journal of microencapsulation, 32(4), 349-357. 125. Hibbeler, R. C. (2011). Mechanical properties of materials. Mechanics of Materials, 8th Edition, Prentice Hall, 81-117. 126. Cheng, C. H., & Lin, H. H. (2008). Measurement of surface tension of epoxy resins used in dispensing process for manufacturing thin film transistor-liquid crystal displays. IEEE Transactions on Advanced Packaging, 31(1), 100-106. 127. Balasundaram, G., Storey, D. M., & Webster, T. J. (2014). Novel nano-rough polymers for cartilage tissue engineering. International journal of nanomedicine, 9, 1845. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71316 | - |
| dc.description.abstract | 環氧樹脂擁有優越的機械韌性、化學抵抗性,廣泛使用於工業塗層、黏著劑、封裝材料及複合材料等。現今許多硬化劑在室溫下即可與環氧樹脂快速反應,所以環氧樹脂與硬化劑一般分開存放,需要時再行混合,以避免不必要的固化反應,然而此方法有著保存及加工較為複雜的問題。本研究以不同有機溶劑系統,環氧樹脂硬化劑採用2-苯基咪唑與高分子聚己內酯,並以不同界面活性劑,在均質機高速攪拌下製備有機相/水相乳化液,藉由溶劑揮發法製備包覆環氧樹脂硬化劑之微膠囊。此微膠囊與環氧樹脂混合後可於室溫下長期存放,需要時再行加溫固化。我們探討不同溶劑、攪拌速度、界面活性劑種類、界面活性劑濃度、有機相與水相比例、硬化劑與高分子比例等製備條件與微膠囊形成之關係,並利用FT-IR、TGA、DSC分析物性、SEM觀測樣品之形貌及測試使用微膠囊交聯固化後成品之機械性質。研究發現採用無毒性溶劑乙酸乙酯作為有機相所製備之微膠囊在室溫與環氧樹脂混合後可保存7天以上不反應,經加熱至50℃可使外層保護之高分子熔融軟化,釋放出內含之硬化劑與環氧樹脂反應,形成交聯固化之成品,達成室溫下可長期存放,低溫即可交聯固化之目的。經過TGA鑑定以無毒性溶劑乙酸乙酯所製備之微膠囊環氧樹脂硬化劑含量為43 wt%,多於使用二氯甲烷所製備的30 wt%。測試機械性質後發現使用乙酸乙酯所製備之微膠囊與環氧樹脂固化反應後,相較於使用純硬化劑之表現,在韌性表現可提升46%。 | zh_TW |
| dc.description.abstract | Although epoxy resins have excellent mechanical and chemical properties, epoxy resins and curing agent are generally stored in two pots to prevent unnecessary curing reaction at room temperature. To solve this problem, we developed a one pot system which can be stored for a long time at room temperature by a simple, nontoxic processing. This involves the encapsulation of the curing agent, 2-phenylimidazole (2PhI), in polycaprolactone (PCL) microcapsules fabricated by oil-in-water emulsion and solvent evaporation method with different organic solvents and surfactants. The encapsulated curing agents can greatly extend the storage time when the microcapsules and epoxy are mixed at room temperature, and the curing reaction can be triggered at elevated temperature. The effect of solvent, rotation speed during the microcapsule formation, surfactant, the concentration of surfactant, the ratio of oil phase and water phase, and the ratio of 2PhI and PCL were investigated. We use SEM to observe the morphology, DSC to examine the curing behavior, TGA to measure the amount the curing agents, FT-IR to confirm the interaction between PVA and PCL, and test the mechanical properties of final curing epoxy specimen. The microcapsules fabricated by nontoxic solvent, ethyl acetate, contain 43 wt% curing agent and can be stored with epoxy for more than 7 days at room temperature without significant reaction while the curing reaction can be triggered upon heating to 50 ˚C. The toughness of cured specimens prepared with the microcapsules is 46% better than that with the pure curing agent. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:04:34Z (GMT). No. of bitstreams: 1 ntu-107-R05549006-1.pdf: 5393008 bytes, checksum: 2acb667e2db7160628ab10d94f634526 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審訂書 I
誌謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言與實驗動機 1 第二章 文獻回顧 3 2.1 環氧樹脂及環氧樹脂硬化劑 3 2.1.1 環氧樹脂之簡介 3 2.1.2 環氧樹脂硬化劑之簡介 7 2.1.3 環氧樹脂之應用 12 2.1.4 含環氧樹脂硬化劑之微膠囊 15 2.2 微膠囊化技術 16 2.2.1 微膠囊化技術之簡介 16 2.2.2 微膠囊化技術之發展 24 2.2.3 微膠囊化技術之應用 25 第三章 實驗方法與儀器 27 3.1 實驗藥品 27 3.1.1 高分子 27 3.1.2 環氧樹脂 27 3.1.3 環氧樹脂硬化劑 28 3.1.4 界面活性劑 28 3.1.5 溶劑 30 3.2 實驗步驟 31 3.2.1 微膠囊製備實驗步驟 31 3.2.2 實驗樣品名稱對照 33 3.3 實驗儀器與原理 35 3.3.1 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 35 3.3.2 白金濺鍍機 (Sputter) 37 3.3.3 示差掃描熱量分析儀 (Differential Scanning Calorimetry, DSC) 37 3.3.4 傅立葉轉換紅外線光譜儀 (Fourier-transform infrared spectroscopy, FTIR) 38 3.3.5 熱重分析儀 (Thermogravimetric analysis, TGA) 38 3.3.6 萬能材料試驗機 (Universal Testing Machine) 39 3.3.7 蕭氏硬度試驗計 (Shore durometer) 39 3.3.8 衝擊試驗機 (Universal Impact Tester) 40 3.3.9 接觸角量測儀 (Contact Angle Analyzer) 42 第四章 結果與討論 43 4.1 製備含環氧樹脂硬化劑之微膠囊實驗參數 43 4.1.1 不同溶劑之影響 43 4.1.2 不同均質機轉速之影響 47 4.1.3 不同界面活性劑之影響 50 4.1.4 不同界面活性劑濃度之影響 55 4.1.5 不同有機相/水相比例之影響 57 4.1.6 不同硬化劑/高分子比例之影響 59 4.2 含環氧樹脂硬化劑之微膠囊性質鑑定與比較 61 4.2.1 含環氧樹脂硬化劑之微膠囊結構分析 61 4.2.2 含環氧樹脂硬化劑之微膠囊含量分析 68 4.2.3 含環氧樹脂硬化劑之微膠囊保存時間測試 71 4.2.4 含環氧樹脂硬化劑之微膠囊機械性質 75 第五章 結論 83 第六章 參考文獻 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微膠囊化技術 | zh_TW |
| dc.subject | 硬化劑 | zh_TW |
| dc.subject | 環氧樹脂 | zh_TW |
| dc.subject | 溶劑揮發法 | zh_TW |
| dc.subject | 有機相/水相乳化液 | zh_TW |
| dc.subject | Epoxy | en |
| dc.subject | Curing agents | en |
| dc.subject | Microencapsulation | en |
| dc.subject | Oil-in-water emulsion | en |
| dc.subject | Solvent evaporation method | en |
| dc.title | 以有機相/水相乳化液及溶劑揮發法製備含環氧樹脂硬化劑之微膠囊 | zh_TW |
| dc.title | Microencapsulation of epoxy curing agent by oil-in-water emulsion and solvent evaporation method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李冠明(Kwang-Ming Lee),賴偉淇(Wei-Chi Lai),鄭智洋(Chih-Yang Cheng) | |
| dc.subject.keyword | 環氧樹脂,硬化劑,微膠囊化技術,有機相/水相乳化液,溶劑揮發法, | zh_TW |
| dc.subject.keyword | Epoxy,Curing agents,Microencapsulation,Oil-in-water emulsion,Solvent evaporation method, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU201700731 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
