請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孔令傑(Ling-Chieh Kung) | |
| dc.contributor.author | Chien-Lin Chang | en |
| dc.contributor.author | 張鑑霖 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:04:21Z | - |
| dc.date.available | 2018-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-23 | |
| dc.identifier.citation | Andrews, B. H., S. M. Cunningham. 1995. LL bean improves call-center forecasting.Interfaces 25(6) 1–13.
Axsäter, S. 2015. Inventory control, vol. 225. Springer. Carbonneau, R., K. Laframboise, R. Vahidov. 2008. Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research 184(3) 1140–1154. Gelper, S., R. Fried, C. Croux. 2010. Robust forecasting with exponential and Holt-Winters smoothing. Journal of Forecasting 29(3) 285–300. Ghobbar, A. A., G. H. Friend. 2003. Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Computers & Operations Research 30(14) 2097–2114. Grander, E. S. 1985. Exponential smoothing: The state of the art. Journal of Forecasting 4(1) 1–28. Hyndman, R. J., Y. Khandakar. 2007. Automatic time series for forecasting: the forecast package for R. 6/07, Monash University, Department of Econometrics and Business Statistics. Kalekar, Prajakta S. 2004. Time series forecasting using Holt-Winters exponential smoothing. Master’s thesis, Kanwal Rekhi School of Information Technology. Sani, Babangida, Kingsman, B. G. 1997. Selecting the best periodic inventory control and demand forecasting methods for low demand items. Journal of the Operational Research Society 48(7) 700–713. Suganthi, L., A. A. Samuel. 2012. Energy models for demand forecasting: a review. Renewable and Sustainable Energy Reviews 16(2) 1223–1240. Taylor, J. W. 2003. Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society 54(8) 799–805. Taylor, J. W. 2007. Forecasting daily supermarket sales using exponentially weighted quantile regression. European Journal of Operational Research 178(1) 154–167. Taylor, J. W. 2011. Multi-item sales forecasting with total and split exponential smoothing. Journal of the Operational Research Society 62(3) 555–563. Willemain, T. R., C. N. Smart, H. F. Schwarz. 2004. A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting 20(3) 375–387. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71312 | - |
| dc.description.abstract | 良好的存貨管理政策需要準確的需求預測。本研究利用機器學習之觀念,自動找出時間序列資料最佳需求預測模型的流程,此流程分別是找出離群值並能夠以三種不同方法處理之,處理完畢後挑選各個候選模型的最佳參數,候選模型包含現行方法、改良版現行方法、線性迴歸模型、正規化線性迴歸模型、移動平均法、指數平滑法和整合移動平均自迴歸模型,並在最後根據驗證誤差挑選最佳需求預測模型。本研究將上述模型訓練與預測方法整合,並實作一決策支援系統,應用在臺灣一家資通訊產業之領導廠商。經由實際資料驗證,本研究使用之預測方法確實可以提昇資通訊零件耗用之預測準確度。本研究亦就預測方法的實務應用做設計與討論。 | zh_TW |
| dc.description.abstract | Demand forecasting enhances the policy-making of inventory management. We propose a procedure of automatically finding the best model for time series data using the concept of machine learning in this research. The procedure is as the following. Firstly we use three different ways to deal with outliers. Secondly, we choose the best parameters for candidate models, which include the current method, improved current method, linear regression, regularized linear regression, moving average, exponential smoothing, and ARIMA. Finally, we choose the best demand forecasting model among all candidate models based on their validation errors. We implement this procedure as a decision support system for a leading ICT company in Taiwan. Through the real data, it is verified that our procedure can improve the forecasting accuracy. We also discuss the predicting method and practical application and design. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:04:21Z (GMT). No. of bitstreams: 1 ntu-107-R05725034-1.pdf: 829004 bytes, checksum: a56384a52d4804dce7cb34fb85fbd6e2 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 1 緒論1
1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程 3 2 文獻回顧 5 2.1 存貨政策 5 2.2 需求預測 6 2.3 時間序列模型 7 3 問題定義 9 3.1 案例公司簡介 9 3.2 資料描述 10 3.3 問題描述 12 4 預測方法與解決方案 15 4.1 總攬 15 4.2 資料前處理 16 4.3 預測模型 18 4.3.1 現行方法 18 4.3.2 改良版現行方法 19 4.3.3 線性迴歸模型 19 4.3.4 正規化線性迴歸模型 21 4.3.5 移動平均法 22 4.3.6 指數平滑法 23 4.3.7 ARIMA 25 4.4 模型執行與結果呈現 25 5 效能驗證 29 5.1 驗證步驟與結果 30 5.1.1 去除離群值 30 5.1.2 選擇模型 31 5.1.3 衡量結果 32 6 結論 35 參考文獻 36 | |
| dc.language.iso | zh-TW | |
| dc.subject | 需求預測 | zh_TW |
| dc.subject | 存貨政策 | zh_TW |
| dc.subject | 自動化預測 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 實務應用 | zh_TW |
| dc.subject | Practical application | en |
| dc.subject | Inventory policy | en |
| dc.subject | Auto prediction | en |
| dc.subject | Demand forecasting | en |
| dc.subject | Machine learning | en |
| dc.title | 基於機器學習之需求預測:資通訊產業之實務應用 | zh_TW |
| dc.title | Demand Forecasting through Machine Learning:
An application in the ICT industry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭佳瑋(Chia-Wei Kuo),陳聿宏(Yu-Hung Chen) | |
| dc.subject.keyword | 需求預測,存貨政策,自動化預測,機器學習,實務應用, | zh_TW |
| dc.subject.keyword | Demand forecasting,Inventory policy,Auto prediction,Machine learning,Practical application, | en |
| dc.relation.page | 38 | |
| dc.identifier.doi | 10.6342/NTU201801410 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-23 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 809.57 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
