Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71311
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor任立中
dc.contributor.authorHao Changen
dc.contributor.author張皓zh_TW
dc.date.accessioned2021-06-17T05:04:18Z-
dc.date.available2018-07-26
dc.date.copyright2018-07-26
dc.date.issued2018
dc.date.submitted2018-07-23
dc.identifier.citation一、 中文文獻
葉小蓁
1998 時間序列分析與應用: 葉小蓁發行.
二、 英文文獻
Agarwal, Rakesh, and Ramakrishnan Srikant
1994 Fast algorithms for mining association rules. Proc. of the 20th VLDB Conference, 1994, pp. 487-499.
Borgelt, Christian
2005 An Implementation of the FP-growth Algorithm. Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, 2005, pp. 1-5. ACM.
Box, George EP, et al.
2015 Time series analysis: forecasting and control: John Wiley & Sons.
Brin, Sergey, et al.
1997 Dynamic itemset counting and implication rules for market basket data. Acm Sigmod Record 26(2):255-264.
Chen, Jason R
2007 Useful clustering outcomes from meaningful time series clustering. Proceedings of the sixth Australasian conference on Data mining and analytics-Volume 70, 2007, pp. 101-109. Australian Computer Society, Inc.
Esling, Philippe, and Carlos Agon
2012 Time-series data mining. ACM Computing Surveys (CSUR) 45(1):12.
Gavrilov, Martin, et al.
2000 Mining the stock market (extended abstract): which measure is best? Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, 2000, pp. 487-496. ACM.
Hyndman, Rob J, et al.
2018 Package ‘forecast’. Online] https://cran. r-project. org/web/packages/forecast/forecast. pdf.
Hyndman, Rob J, and Yeasmin Khandakar
2007 Automatic time series for forecasting: the forecast package for R: Monash University, Department of Econometrics and Business Statistics.
Imhoff, Michael, et al.
1998 Time series analysis in intensive care medicine. Technical Report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund.
Keogh, Eamonn J, and Michael J Pazzani
2001 Derivative dynamic time warping. Proceedings of the 2001 SIAM International Conference on Data Mining, 2001, pp. 1-11. SIAM.
Sun, Leilei, and Chonghui Guo
2014 Incremental affinity propagation clustering based on message passing. IEEE Transactions on Knowledge and Data Engineering 26(11):2731-2744.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71311-
dc.description.abstract在傳統的時間序列分析中,多是針對單一的時間序列進行自我相關迴歸分析,若要進行高維度的分析則可能遇上非定態(Non-Stationary)的情況,無法直接建立模型分析。因此發展出如 PCA 降維(Gavrilov, et al. 2000)、動態時間校正(Keogh and Pazzani 2001)等方法將高維時間序列進行分群(Clustering)。
本篇研究使用聯合醫院某院區為期兩年半之用藥資料進行分析,其中包含1038 種藥品在 30 個月中的藥品支出量,在對藥物不具有領域知識(Domain knowledge)的情況下,欲分別使用動態時間校正以及 ARIMA 模型建立各藥品的殘差矩陣兩方法,探詢各藥品之相關性,再從有相關性的藥品當中,實際查看時間序列上的趨勢(Trend)、季節性(Seasonal)的異同,或是序列相似的藥品間是否具有實際關係做後續分析。
zh_TW
dc.description.abstractIn traditional time series methods, studies usually used ARIMA model to analysis and predict. However, it may become non-stationary model in high dimension situation
so that the study can’t use multivariate ARIMA model directly. Reducing dimensions by PCA (principal component analysis) and DTW (dynamic time warping) are another
way to cluster high dimensions time series data.
Data of the theme is the medicine expenditure from TAIPEI CITY HOSPITAL. It is from January, 2015 to June, 2017, includes 1038 drugs. Without domain knowledge of drugs, the study uses DTW and residual matrix of ARIMA model individually to find correlated drugs. After finds out correlated drugs, the author checks if these drugs have
similarity of trend or seasonal.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:04:18Z (GMT). No. of bitstreams: 1
ntu-107-R05h41010-1.pdf: 1149559 bytes, checksum: 14173d433b1b9fbcce0e5d0afcfd0ae2 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書...II
誌 謝...III
摘 要...IV
Abstract...V
目 錄...VI
表目錄...VII
圖目錄...VIII
第壹章 緒論...9
第一節 研究背景與動機...9
第二節 研究目的...9
第三節 研究流程...10
第貳章 文獻回顧...11
第一節 醫院用藥分析之文獻回顧...11
第二節 動態時間校正分析之文獻回顧...12
第三節 模型基底分析之文獻回顧...13
第參章 研究方法...16
第一節 資料來源...16
第二節 研究架構...16
第三節 分析方法...18
第肆章 實證分析...19
第一節 探索性分析...19
第二節 動態時間校正分析...20
第三節 模型基底方法分析...23
第四節 結果解釋...25
第伍章 結論與建議...26
第一節 結論...26
第二節 建議...26
參考文獻...28
dc.language.isozh-TW
dc.subject時間序列相關性zh_TW
dc.subject高維度時間序列zh_TW
dc.subject動態時間校正zh_TW
dc.subjectARIMA 模型zh_TW
dc.subject殘差分析zh_TW
dc.subjectARIMA modelen
dc.subjecttime series correlationen
dc.subjectresidual analysisen
dc.subjecthigh dimension time seriesen
dc.subjectdynamic time warpingen
dc.title動態時間校正與模型基底分析高維度時間序列資料zh_TW
dc.titleLarge Scale Time Series Data Analysis by Using Dynamic Time
Warping and Model-Based Method
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王鴻龍,陳靜怡
dc.subject.keyword時間序列相關性,高維度時間序列,動態時間校正,ARIMA 模型,殘差分析,zh_TW
dc.subject.keywordtime series correlation,high dimension time series,dynamic time warping,ARIMA model,residual analysis,en
dc.relation.page29
dc.identifier.doi10.6342/NTU201801753
dc.rights.note有償授權
dc.date.accepted2018-07-23
dc.contributor.author-college共同教育中心zh_TW
dc.contributor.author-dept統計碩士學位學程zh_TW
Appears in Collections:統計碩士學位學程

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
1.12 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved