Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71291
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅承德(Cheng-Der Fuh)
dc.contributor.authorHao-Hsiang Changen
dc.contributor.author張皓翔zh_TW
dc.date.accessioned2021-06-17T05:03:11Z-
dc.date.available2023-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-24
dc.identifier.citation[1] Adrian, T. and Brunnermeier, M. K., CoVaR. American Economic Review,
Vol. 106, No. 7, 2016.
[2] Andrews, L. C., Special Functions of Mathematics for Engineers, 1998 (Oxford
University Press).
[3] Bucklew, J. A., Introduction to Rare Event Simulation, 2004 (Springer-Verlag:
New York).
[4] Fuh, C. D. and Hu, I., Efficient importance sampling for events of moderate
deviations with applications. Biometrika 91 (2), 471–490, 2004.
[5] Fuh, C. D., Hu, I., Hsu, Y. H. and Wang, R. H., Efficient simulation of value
at risk with heavy-tailed risk factors. Operations Research, 59, 1395–1406,
2011.
[6] Fuh, C. D. and Wang, C. J., Efficient Simulation for Portfolio Credit Risk in
Normal Mixture Copula Models. arXiv:1711.03744, 2017.
[7] Glasserman, P., Monte Carlo Methods in Financial Engineering, 2004
(Springer: New York).
[8] Glasserman, P., Heidelberger, P., and Shahabuddin, P., Portfolio Value-at-
Risk with heavy-tailed risk factors. Mathematical Finance, 12: 239-269, 2002.
[9] Glasserman, P., Heidelberger, P., and Shahabuddin, P., Variance reduction
techniques for estimating Value-at-Risk. Management Science, 46: 1349-1364,
2000.
[10] Glynn, P. W., Importance sampling for Monte Carlo estimation of quantiles.
In Mathematical Methods in Stochastic Simulation and Experimental Design:
Proc. 2nd St. Petersburg Workshop on Simulation, Publishing House of Saint
Petersburg, 180–185, 1996.
[11] Hall, P. and Martin, M. A., Exact convergence rate of bootstrap quantile
variance estimator. Probability Theory Related Fields, 80, 261–268, 1988.
[12] Hull, J., Options, Futures, and Other Derivatives, 2013 (Pearson Education).
[13] Liu, J., and Yang, X., The convergence rate and asymptotic distribution of
the bootstrap quantile variance estimator for importance sampling. Advances
in Applied Probability, 44, 815–841, 2012.
[14] Magnus, J.A. and Neudecker, H., Matrix Differential Calculus with Applications
in Statistics and Econometrics, 2007 (John Wiley & Sons Ltd).
[15] Mainik, G. and Schaanning, E., On dependence consistency of CoVaR and
some other systemic risk measures. arXiv:1207.3464, 2012.
[16] Ross, S.M., Simulation, 2013 (Academic Press: New York).
[17] Teng, H.W., Fuh, C.D., and Chen, C.C., On an automatic and optimal importance
sampling approach with applications in finance. Quantitative Finance,
16 (8), 1259–1271, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71291-
dc.description.abstract本論文將基於邊際和聯合機率進行 CoVaR 的模擬。此外,將提出重要抽樣法的最佳參數與分位數之間的二次模式,這可以幫助我們更有效率地找到所要估計的分位數。zh_TW
dc.description.abstractIn this thesis, a simulation of CoVaR based on the marginal and the joint probability would be presented. Also, a quadratic pattern between the optimal parameters of importance sampling and the quantiles will be proposed, which may help us to find the quantiles of interest more efficiently.en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:03:11Z (GMT). No. of bitstreams: 1
ntu-107-R05246008-1.pdf: 1006004 bytes, checksum: 9c831c18d964e1729ba975d0729f896c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書i
致謝ii
摘要iii
Abstract iv
1 Introduction 1
2 Preliminaries 4
2.1 VaR and CoVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Importance Sampling and Exponential Tilting . . . . . . . . . . . . 6
2.3 Delta-Gamma Approximation . . . . . . . . . . . . . . . . . . . . . 8
3 Simulation under Normal Distribution 11
3.1 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Alternative Distribution . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Simulation under t-Distribution 20
4.1 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Alternative Distribution . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Numerical Results 29
6 Conclusion Remarks and Further Research 40
dc.language.isoen
dc.subject條件風險值zh_TW
dc.subjectdelta-gamma 近似zh_TW
dc.subject稀有事件zh_TW
dc.subject重要抽樣法zh_TW
dc.subject風險值zh_TW
dc.subjectdelta-gamma approximationen
dc.subjectrare eventsen
dc.subjectconditional value at risken
dc.subjectimportance samplingen
dc.subjectvalue at risken
dc.titleCoVaR 之蒙地卡羅模擬zh_TW
dc.titleMonte Carlo Simulation on CoVaRen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor江金倉(Chin-Tsang Chiang)
dc.contributor.oralexamcommittee陳宏(Hung Chen),韓傳祥(Chuan-Hsiang Han)
dc.subject.keyword風險值,條件風險值,重要抽樣法,稀有事件,delta-gamma 近似,zh_TW
dc.subject.keywordvalue at risk,conditional value at risk,importance sampling,rare events,delta-gamma approximation,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201801699
dc.rights.note有償授權
dc.date.accepted2018-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
982.43 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved