Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71281
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林太家(Tai-Chia Lin)
dc.contributor.authorYu-Hsiang Lanen
dc.contributor.author藍鈺翔zh_TW
dc.date.accessioned2021-06-17T05:02:39Z-
dc.date.available2019-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-24
dc.identifier.citation[1] H. Bao, D. Ding, J. Bi, W. Gu, and R. Chen. An efficient spectral element method for semiconductor transient simulation. Applied Computational Electromagnetics Society Journal, 31(11), 2016.
[2] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data bank, 1999–. In International Tables for Crystallography Volume F: Crystallography of biological macromolecules, pages 675–684. Springer, 2006.
[3] J. F. Cordero-Morales, L. G. Cuello, Y. Zhao, V. Jogini, D. M. Cortes, B. Roux, and E. Perozo. Molecular determinants of gating at the potassium-channel selectivity filter. Nature Structural and Molecular Biology, 13(4):311, 2006.
[4] M. O. Deville, P. F. Fischer, and E. H. Mund. High-order methods for incompressible fluid flow, volume 9. Cambridge university press, 2002.
[5] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier. Nek5000 web page. Web page: http://nek5000. mcs. anl. gov, 2008.
[6] A. Flavell, M. Machen, B. Eisenberg, J. Kabre, C. Liu, and X. Li. A conservative finite difference scheme for poisson–nernst–planck equations. Journal of Computational Electronics 13(1):235–249, 2014.
[7] S. Furini, F. Zerbetto, and S. Cavalcanti. Application of the poisson-nernst-planck theory with space-dependent diffusion coefficients to kcsa. Biophysical journal, 91(9):3162–3169, 2006.
[8] C. L. Gardner and J. R. Jones. Electrodiffusion model simulation of the potassium channel. Journal of theoretical biology, 291:10–13, 2011.
[9] N. Gavish. Poisson–nernst–planck equations with steric effects—non-convexity and multiple stationary solutions. Physica D: Nonlinear Phenomena, 2017.
[10] W. J. Gordon and C. A. Hall. Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numerische Mathematik, 21(2):109–129, 1973.
[11] Y. He, M. Min, and P. Fischer. An efficient spectral element method for drift-diffusion models. 2017.
[12] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer Science & Business Media, 2007.
[13] T.-L. Horng, T.-C. Lin, C. Liu, and B. Eisenberg. Pnp equations with steric effects: a model of ion flow through channels. The Journal of Physical Chemistry B, 116(37):11422–11441, 2012.
[14] T.-L. Horng, P.-H. Tsai, and T.-C. Lin. Modification of bikerman model with specific ion sizes. Molecular Based Mathematical Biology, 5(1):142–149, 2017.
[15] D. A. Knoll and D. E. Keyes. Jacobian-free newton–krylov methods: a survey of approaches and applications. Journal of Computational Physics, 193(2):357–397, 2004.
[16] Y.-H. Lan, P.-H. Tsai, T.-C. Lin, C.-H. Teng, P. Fischer, and M. Min. Spectral element simulations for pnp-steric equations. 2018.
[17] C. C. Lee, H. Lee, Y. Hyon, T. C. Lin, and C. Liu. Asymptotic analysis of poisson-boltzmann equations with constrained ionic densities for multi-species ions. to appear in Comm. Math. Sci., 201X.
[18] T.-C. Lin and B. Eisenberg. A new approach to the lennard-jones potential and a new model: Pnp-steric equations. Communications in Mathematical Sciences, 12(1):149–173, 2014.
[19] T.-C. Lin and B. Eisenberg. Multiple solutions of steady-state poisson–nernst–planck equations with steric effects. Nonlinearity, 28(7):2053, 2015.
[20] M. Min and P. Fischer. Nekcem. Mathematics and Computer Science Division, Argonne National Laboratory. https://svn. mcs. anl. gov/repos/NEKCEM, Github:https://github.com/NekCEM NekCEM.git
[21] C. M. Nimigean, J. S. Chappie, and C. Miller. Electrostatic tuning of ion conductance in potassium channels. Biochemistry, 42(31):9263–9268, 2003.
[22] A. T. Patera. A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of computational Physics, 54(3):468–488, 1984.
[23] A. N. Thompson, D. J. Posson, P. V. Parsa, and C. M. Nimigean. Molecular mechanism of ph sensing in kcsa potassium channels. Proceedings of the National Academy of Sciences, 105(19) 6900–6905, 2008.
[24] P.-H. Tsai, Y.-H. Lan, M. Min, and P. Fischer. Jacobi-free newton krylov method for poisson-nernst-planck equations. 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71281-
dc.description.abstract本論文針對泊松-能斯特-普朗克(Poisson-Nernst-Plank)類型的時變偏微分方程及其穩定態,提出高精度的數值格式,並實作到平行化、高效能的三維程式——NekCEM上,應用到生物上離子通道的大型模擬。
研究主要分成三部分,第一部分為解數值泊松-能斯特-普朗克方程。我們考慮一至三維度空間,選用高精度譜方法,其有限元素的特性將空間分成多域,使得資料結構適合平行化。時間方面,首先採用半顯隱式一階有限差分法;再來利用理察森外推法(Richardson extrapolation),提高對時間差分的精度;最後我們也研究去雅可比-牛頓-克里夫法(Jacobian-free Newton-Krylov),加速得到穩定態解的過程。我們對這些方法進行數值實驗,觀察在不同邊界條件下,空間上近似解的誤差呈指數收斂,時間上達到二階收斂,符合理論預期。
第二部份我們將前述的數值格式應用到離子通道問題,我們拿KcsA鉀離子通道的蛋白質結構,在形狀複雜的三維通道上解泊松-能斯特-普朗克方程,從動態解到接近穩態,以模擬離子通過通道時的傳輸行為。由於離子通道的形狀曲折,對幾何形狀的不規則性做了預處理,而為了有足夠多的解析度,我們使用的網格點數超過一億,整個數值模擬的計算量和數據量都非常龐大。這部份使用了美國Argonne國家實驗室的超級電腦Mira跟Cetus,用了超過上千個節點,以及用其旗下的另一臺電腦Cooley上做資料的視覺化與後處理。
第三部份我們討論如何基於泊松-能斯特-普朗克方程的格式,加上位阻項及高階位阻項。這些高階非線性項需對顯隱式做額外的差值處理,以降低非線性項影響,使格式穩定進而收斂。而不同離子之間的耦合則必須解特別大的線性系統,這使得程式的編寫必須特別小心。我們會討論可能的邊界條件及呈現初步的數值實驗結果。
zh_TW
dc.description.abstractThis thesis presents a high-order accurate scheme to solve time-dependent and time-independent Poisson-Nernst-Plank(PNP) type equations, including the implementation into a highly efficient parallel code--NekCEM, and large scale simulations on ion channel.
For the first part, we focus on the numerical PDE methods. We use high-order spectral element method to discretize the space. As for the temporal discretization, first, we use first order finite difference with implicit-explicit methods. Then we use Richardson extrapolation to achieve second order accurate in time. Finally, we study Jacobian-free Newton-Krylov method to build a steady state solver. We provide numerical experiments to those methods under different kinds of boundary conditions, and successfully observing the exponential convergent in space and second order in time.
For the second part, we apply our PNP schemes and codes to simulate ions transport in a potassium channel--KcsA. The channel structure comes from real biological data, which has to be taken care for its the complex three dimensional protein structure in pre-process. We solve time-dependent Poisson-Nernst-Plank equations on that complex geometry toward near steady state. To have enough the resolution, the total numbers of grid points are over a hundred million. The simulations are performed on supercomputers in Argonne Leadership Computing Facility (ALCF). We use over thousands nodes of Mira and Cetus, and using Cooley to do the visualizations.
For the third part, we will discuss how to add the steric terms and the higher order steric terms into our PNP schemes. These leading nonlinear terms need an extra-extrapolation to increase the stability, and the coupling cross terms need a larger linear solver. We will discuss the implementation of some possible boundary conditions and some early state results will be shown.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:02:39Z (GMT). No. of bitstreams: 1
ntu-107-R05246001-1.pdf: 14661006 bytes, checksum: 5acdade7d794be5da49866dd84e8f88b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
口試委員會審定書 iii
誌謝 v
Acknowledgements vii
摘要 ix
Abstract xi
1 Introduction 1
2 Governing Equations 5
2.1 Poisson-Nernst-Plank Equation 5
2.2 Dimensionless Equations 6
3 Spectral Element Methods 9
3.1 Weak Formulation and Discretization 9
3.1.1 Poisson equation 9
3.1.2 Nernst-Plank equation 10
3.2 Spectral Discretization 11
3.2.1 Collocation and Discretization 11
3.2.2 Differential and Mass Matrices 12
3.2.3 Helmholtz Operator 13
3.2.4 Multi-domain 14
3.3 Boundary Conditions 17
3.3.1 Dirichlet Boundary Condition 19
3.3.2 Neumann and Robin Boundary Condition 20
4 Temporal Discretization 21
4.1 First Order Backward Difference Formula (BDF1) with Extrapolation 21
4.2 Second-order Richardson Extrapolation 23
4.3 Jacobian-free Newton-Krylov Methods 25
5 Implementation and Numerical Results 29
5.1 Implementation on NekCEM 29
5.2 Spatial Convergent Tests 30
5.3 Temporal Convergent Tests 43
5.4 Cylinder Cases 45
5.4.1 Dumbbell 45
5.4.2 Mono-cylinder 51
6 Ion Transport Simulations 55
6.1 KcsA data–PDB and PQR files 57
6.2 Treatments of Geometry and Parameters 58
6.2.1 Parameter Settings 59
6.2.2 Geometry Smoothing 63
6.2.3 Parameters in Element-wise Constant 66
6.3 Preliminary Results 68
6.3.1 Initial Condition 69
6.3.2 Degree 4 Cases Using E120x120x60 Elements 69
6.3.3 Degree 2 Cases Using E120x120x60 Elements 74
7 Poisson-Nernst-Plank with Steric Effects Terms 77
7.1 PNP-steric 78
7.1.1 Energy and governing equations 78
7.1.2 Dimensionless PNP-steric Equations 80
7.1.3 Weak Formulations of PNP-steric 80
7.2 Numerical Schemes and Preliminary Results for PNP-steric 81
7.2.1 Discretization and Extra-extrapolation 81
7.2.2 No-flux Boundary Condition 84
7.2.3 Numerical Stability Tests for PNP-steric w.r.t gij 85
7.2.4 Spatial Convergent Tests 90
7.3 Other Steric Models 93
7.3.1 Bikerman’s Model 93
7.3.2 Higher-order PNP-steric 94
8 Conclusions and Future Works 97
Bibliography 101
dc.language.isoen
dc.subject位阻項zh_TW
dc.subjectKcsA蛋白質通道zh_TW
dc.subject譜方法zh_TW
dc.subject泊松-能斯特-普朗克方程組zh_TW
dc.subjectPoisson-Nernst-Plank equationsen
dc.subjectSpectral element methodsen
dc.subjectKcsA protein channelen
dc.subjectsteric termsen
dc.title泊松─能斯特─普朗克類型方程的高效能計算及KcsA離子運輸模擬zh_TW
dc.titleHigh Performance Computation of Poisson-Nernst-Plank Type Equations and Simulations of Ion Transport Through KcsA Channelsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧君豪(Chun-Hao Teng),洪子倫(Tzyy-Leng Horng)
dc.subject.keyword泊松-能斯特-普朗克方程組,譜方法,KcsA蛋白質通道,位阻項,zh_TW
dc.subject.keywordPoisson-Nernst-Plank equations,Spectral element methods,KcsA protein channel,steric terms,en
dc.relation.page103
dc.identifier.doi10.6342/NTU201800871
dc.rights.note有償授權
dc.date.accepted2018-07-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
14.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved