Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71275
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周錫增(Hsi-Tseng Chou)
dc.contributor.authorDerry Permana Yusufen
dc.contributor.author尤德睿zh_TW
dc.date.accessioned2021-06-17T05:02:19Z-
dc.date.available2018-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-24
dc.identifier.citationBIBLIOGRAPHY
[1] D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998, pp. 424–427, 162.
[2] E. E. Altshuler and R. A. Marr, “A comparison of experimental and theoretical values of atmospheric absorption at the longer millimeter wavelengths,” IEEE Trans. Antennas Propag., vol. AP-36, no. 10, pp. 1471–1480, Oct. 1988.
[3] FCC 03-248, “Allocation and service rules for the 71-76GHz, 81-86GHz, and 92-95GHz bands,” Federal Communication Commission, Nov. 2003.
[4] SPP 2006-11, “Planning of the 71-76 GHz and 81-86 GHz bands for millimeter wave high capacity fixed link technology,” Australian communication and media authority, Dec. 2006.
[5] Y. Lee, X. Lu, Y. Hao, S. Yang, J.R.G. Evans, and C.G. Parini, “Narrow-beam azimuthally omni-directional millimetre-wave antenna using freeformed cylindrical woodpile cavity,” IET Microwaves, Antennas & Propagation, vol. 4, no.10, pp. 1491- 1499, Oct. 2010.
[6] B.D. Nguyen, J. Lanteri, J.-Y. Dauvignac, C. Pichot, and C. Migliaccio, “94 GHz folded Fresnel reflector using C-patch elements,” IEEE Trans. Antennas Propag., vol. 55, pp. 3373–3381, Nov. 2008.
[7] C. C. Ling and G. M. Rebeiz, “A 94 GHz planar monopulse tracking receiver,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 10, pp. 1863–1871, Oct. 1994.
[8] Hodges, R.J. Badley, and Tarsier, “A millimeter wave radar for airport runway debris detection,” in Proc. European Radar Conf., Amsterdam, 2004.
[9] L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Magazine, vol. 4, pp. 39-50, 2003.
[10] E. Moldovan, S.O. Tatu, T. Gaman, K. Wu, and R.G. Bosisio, “A new 94-GHz six-port collision avoidance radar sensor,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 3, pp. 751–759, Mar. 2004.
[11] http://web.mst.edu/~mobildat/E-band%20Frequencies/index.html
[12] E. Levine, G. Malamud, S. Shtrikman, and D. Treves, “A study of microstrip array antennas with the feed network,” IEEE Trans. Antennas Propag., vol. 37, no. 4, pp. 426–464, Apr. 1989.
[13] A. Borji, D. Busuioc, and S. Safavi-Naeini, “Efficient, low-cost integrated waveguide-fed planar antenna array for Ku-band applications,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 336–339, 2009.
[14] D. M. Pozar, “Considerations for millimeter wave printed antennas,” IEEE Trans. Antennas and Propagation, vol. 31, no. 5, pp. 740–747, Sept. 1983.
[15] W. Wang, S. S. Zhong, Y. M. Zhang, and X. L. Liang, “A broadband slotted ridge waveguide antenna array,” IEEE Trans. Antennas Propag., vol. 54, no. 8, pp. 2416–2420, Aug. 2006.
[16] P. Sehyun, Y. Tsunemitsu, J. Hirokawa, and M. Ando, “Center feed single layer slotted waveguide array,” IEEE Trans. Antennas Propag., vol. 54, no. 5, pp. 1474–1478, May 2006.
[17] G. A. Casula and G. Mazzarella, “A direct computation of the frequency response of planar waveguideslot arrays,” IEEE Trans. Antennas Propag., vol. 52, no. 7, pp. 1909–1912, Jul. 2004.
[18] M. Ando, Y. Tsunemitsu, M. Zhang, J. Hirokawa, and S. Fujii, “Reduction of long line effects in single-layer slotted waveguidear- rays with an embedded partially corporate feed,” IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2275–2280, Jul. 2010.
[19] M. Zhang, J. Hirokawa, and M. Ando, “An E-band partially corporate feed uniform slot array with laminated quasi double-layer waveguide and virtual PMC terminations,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1521–1527, May 2011.
[20] S. S. Oh, J. W. Lee, M. S. Song, and Y. S. Kim, “Two-layer slotted-waveguide antenna array with broad reflection/gain bandwidth at millimetre-wave frequencies,” IEEE Proc.-Microw., Antennas Propag., vol. 151, no. 5, pp. 393–398, Oct. 2004.
[21] B. Lee, K. Jung, and S.-H. Yang, “High-efficiency planar slot-array antenna with a single waveguide-fed cavity-backed subarray,” Microw. Opt. Technol. Lett., vol. 43, no. 3, pp. 228–231, 2004.
[22] Y. Kimura, T. Hirano, J. Hirokawa, and M. Ando, “Alternating-phase fed single-layer slotted waveguide arrays with chokes dispensing with narrow wall contacts,” IEEE Proc.-Microw., Antennas Propag., vol. 148, no. 5, pp. 295–301, Oct. 2001.
[23] K. Jung, H. Lee, G. Kang, S. Han, and B. Lee, “Cavity-backed planar waveguide-fed subarray,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jun. 2004, 115.5.
[24] D. Howard, Ed., Dictionary of Electronics, 4th ed. Penguin Reference, 2005.
[25] S. Ramo, J. Whinnery, and T. van Duzer, Fields and Waves in Communi- cation Electronics. John Wiley & Sons, 1994.
[26] J. M. Lopez-Sanchez and J. Fortuny-Guasch, '3-D radar imaging using range migration techniques,' IEEE Transactions on Antennas and Propagation, vol. 48, no. 5, pp. 728-737, 2000.
[27] S. Kharkovsky, M. T. Ghasr, M. A. Abou-Khousa, and R. Zoughi, 'K- Band Varactor Diode-Tuned Elliptical Slot Antenna for Wideband Imaging,' IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4325-4328, 2011.
[28] B. Gonzalez-Valdes, Y. Alvarez, J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, 'On the Combination of SAR and Model Based Techniques for High-Resolution Real-Time Two-Dimensional Reconstruction,' IEEE Transactions on Antennas and Propagation, vol. 62, no. 10, pp. 5180-5189, 2014.
[29] Wang Wei, Jin Jian, Lu Jia-Guo, and Zhong Shun-Shi, 'Waveguide slotted antenna array with broadband, dual-polarization and low cross- polarization for X-band SAR applications,' 2005 IEEE International Radar Conference, 2005, pp. 653-656.
[30] R. Torres, C. Buck, J. Guijarro, and J. L. Suchail, 'ESA's ground breaking synthetic aperture radar: the ENVISAT-1 ASAR active antenna,' 1999 IEEE Antennas and Propagation Society International Symposium, 1999, pp. 1536-1539 vol.3.
[31] J. Munder and D. Miller, 'TerraSAR-X, German X-band remote sensing system,' Proceedings of 2003 International Conference on Recent Advances in Space Technologies, 2003, pp. 14-18.
[32] M. Stangl, R. Werninghaus, and R. Zahn, 'The TERRASAR-X active phased array antenna,' 2003 IEEE International Symposium on Phased Array Systems and Technology, 2003, pp. 70-75.
[33] AF Stevenson, 'Theory of Slots in Rectangular Wave‐Guides,' Journal of Applied Physics, vol. 19, no. 1, pp. 24-38, 1948.
[34] Arthur A Oliner, 'The impedance properties of narrow radiating slots in the broad face of rectangular waveguide: Part I--Theory,' IRE Transactions on Antennas and Propagation, vol. 5, no. 1, pp. 4-11, 1957.
[35] Arthur A Oliner, 'The impedance propeties of narrow radiating slots in the broad face of rectangular waveguide: Part II--Comparison with measurement,' IRE Transactions on Antennas and Propagation, vol. 5, no. 1, pp. 12-20, 1957.
[36] Robert S Elliott and L Kurtz, 'The design of small slot arrays,' IEEE Transactions on Antennas and Propagation, vol. 26, no. 2, pp. 214-219, 1978.
[37] Robert S Elliott, 'An improved design procedure for small arrays of shunt slots,' IEEE Transactions on Antennas and Propagation, vol. 31, no. 1, pp. 48-53, 1983.
[38] Robert S Elliott and William R Oloughlin, 'The design of slot arrays including internal mutual coupling,' IEEE transactions on antennas and propagation, vol. 34, pp. 1149-1154, 1986.
[39] Phillip N Richardson and Hung Yuet Yee, 'Design and analysis of slotted waveguide antenna arrays,' Microwave Journal, vol. 31, no. 6, pp. 109- 125, 1988.
[40] R Kinsey, 'An edge-slotted waveguide array with dual-plane monopulse,' IEEE Transactions on Antennas and Propagation, vol. 47, no. 3, pp. 474- 481, 1999.
[41] Robert S Elliot, Antenna theory and design: John Wiley & Sons, 2006.
[42] Mazen Hamadallah, 'Frequency limitations on broad-band performance of shunt slot arrays,' IEEE Transactions on Antennas and Propagation, vol. 37, no. 7, pp. 817-823, 1989.
[43] R Blommendaal and BE Westerman, 'Matched Shuntslots in the Narrow Wall of a Waveguide,' 1969 1st European Microwave Conference, 1969, pp. 375-379.
[44] FJ Paoloni, 'A cavity-backed resonant slot array--Theory and measurement,' IEEE Transactions on Antennas and Propagation, vol. 28, no. 2, pp. 259-263, 1980.
[45] W. H. Watson, 'Resonant slots,' Journal of the Institution of Electrical Engineers - Part IIIA: Radiolocation, vol. 93, no. 4, pp. 747-777, 1946.
[46] Tomas Sehm, Arto Lehto, and A Räisänen, 'A large planar antenna consisting of an array of waveguide fed horns,' 1996 26th European Microwave Conference 1996, pp. 610-613.
[47] Yohei Miura, Jiro Hirokawa, Makoto Ando, Yuzo Shibuya, and Goro Yoshida, 'Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band,' IEEE Transactions on Antennas and Propagation vol. 59, no. 8, pp. 2844-2851, 2011.
[48] Julio Navarro, 'Wide‐band, low‐profile millimeter‐wave antenna array,'Microwave and Optical Technology Letters, vol. 34, no. 4, pp. 253-255, 2002.
[49] Thomas Metzler, 'Microstrip series arrays,' IEEE transactions on Antennas and Propagation, vol. 29, pp. 174-178, 1981.
[50] H. Evans, P. Gale, and A. Sambell, 'Performance of 4x4 sequentially rotated patch antenna array using series feed,' Electronics Letters, vol. 39, no. 6, pp. 493-494, 2003.
[51] A. Sabban, 'Ka band microstrip antenna arrays with high efficiency,' IEEE Antennas and Propagation Society International Symposium, 1999, pp. 2740-2743 vol.4.
[52] G Amendola, E Arnieri, L Boccia, A Borgia, P Focardi, and I Russo, 'Hybrid waveguide–stripline feeding network for dual polarised arrays at K band,' IET microwaves, antennas & propagation, vol. 5, no. 13, pp. 1568-1575, 2011.
[53] E. Arnieri, I. Russo, L. Boccia, G. Amendola, and G. Di Massa, 'Building blocks for hybrid waveguide/suspended-stripline parallel/series fed millimeter wave arrays,' IEEE Antennas and Propagation Society International Symposium, 2008, pp. 1-4.
[54] E. Arnieri, I. Russo, L. Boccia, A. Borgia, and G. Amendola, 'Hybrid waveguide-stripline feeding networks for Ka-band and millimetre-wave arrays,' 3rd European Conference on Antennas and Propagation, 2009, pp. 2588-2591.
[55] John Huang, 'A parallel‐series‐fed microstrip array with high efficiency and low cross‐polarization,' Microwave and Optical Technology Letters, vol. 5, no. 5, pp. 230-233, 1992.
[56] Y. Kimura, Y. Miura, T. Shirosaki, T. Taniguchi, Y. Kazama, J. Hirokawa, M. Ando, and T. Shirouzu, 'A Low-Cost and Very Compact Wireless Terminal Integrated on the Back of a Waveguide Planar Array for 26 GHz Band Fixed Wireless Access (FWA) Systems,' IEEE Transactions on Antennas and Propagation, vol. 53, no. 8, pp. 2456-2463, 2005.
[57] Tomas Sehm, Arto Lehto, and Antti V Raisanen, 'A high-gain 58-GHz box-horn array antenna with suppressed grating lobes,' IEEE Transactions on Antennas and Propagation, vol. 47, no. 7, pp. 1125-1130, 1999.
[58] Microwaves101, 'http://www.microwaves101.com/encyclopedias/waveguide-construction.'
[59] W.D. Williams, 'Aluminum waveguide antenna, adhesives, curing, microwaves,' US Patent 3950204 A, 1976.
[60] R.I. Wolfson, W.G. Sterns, J.D. Foglesonger, and V.M. Petrillo, 'Serpentine feeds and method of making same,' US Patent 4742355 A, 1988.
[61] Coleman Microwave Company, 'http://www.aluminumdipbrazing.com.'
[62] T.A. Dumas, 'Dip brazed corrugated feed horn,' US Patent 4408208A,1983.
[63] Flake C Campbell, Joining: understanding the basics: ASM International, 2011.
[64] Jiro Hirokawa, Makoto Ando, Naohisa Goto, Nobuharu Takahashi, Takashi Ojima, and Masahiro Uematsu, 'A low-profile single-layer leaky wave slotted waveguide array for mobile DBS reception,' 1993 AP-S DigestAntennas and Propagation Society International Symposium, 1993, pp. 132-135.
[65] Kunio Sakakibara, Jiro Hirokawa, Makoto Ando, and Naohisa Goto, 'A slotted waveguide planar array antenna for entrance radio system in mobile communication,' 1995 Fourth IEEE International Conference on Universal Personal Communications, 1995, pp. 373-376.
[66] K. Sakakibara, J. Hirokawa, M. Ando, and N. Goto, 'High-gain and high- efficiency single-layer slotted waveguide array for use in 22 GHz band,' Electronics Letters, vol. 32, no. 4, pp. 283-284, 1996.
[67] M. Ando and J. Hirokawa, 'High-gain and high-efficiency single-layer slotted waveguide arrays in 60 GHz band,' Tenth International Conference on Antennas and Propagation, 1997, pp. 464-468 vol.1.
[68] J Joubert and DA McNamara, 'Dyadic Green's function of electric type for inhomogeneously loaded rectangular waveguides,' IEEE Proceedings H (Microwaves, Antennas and Propagation), 1989, pp. 469-474.
[69] J Joubert and DA McNamara, 'Longitudinal slots in broad wall of rectangular waveguide inhomogeneously loaded with dielectric slab,' Electronics Letters, vol. 27, no. 16, pp. 1480-1482, 1991.
[70] DA McNamara, JP Jacobs, and J Joubert, 'Form of field in small-offset longitudinal slot in broad wall of rectangular waveguide,' Electronics Letters, vol. 28, no. 1, pp. 16-17, 1992.
[71] Johan Joubert and Derek A McNamara, 'Analysis of radiating slots in a rectangular waveguide inhomogeneously loaded with a dielectric slab,' IEEE Transactions on Antennas and Propagation, vol. 41, no. 9, pp. 1212-1221, 1993.
[72] D. A. McNamara and J. Joubert, 'Experimentally determined equivalent network scattering parameters for edge slots in rectangular waveguide for use as reference data,' IEEE Microwave and Guided Wave Letters, vol. 3, no. 11, pp. 405-407, 1993.
[73] Johan Joubert, 'A moment method analysis of a folded E-plane short in rectangular waveguide,' IEEE Microwave and Guided Wave Letters, vol. 4, no. 7, pp. 223-225, 1994.
[74] Johan Joubert, 'A transverse slot in the broad wall of inhomogeneously loaded rectangular waveguide for array applications,' IEEE Microwave and Guided Wave Letters, vol. 5, no. 2, pp. 37-39, 1995.
[75] JAG Malherbe and J Joubert, 'Radiation properties of a long slot in the broad wall of a waveguide,' Electronics Letters, vol. 34, no. 6, pp. 568- 570, 1998.
[76] J Joubert and JAG Malherbe, 'Moment method calculation of the propagation constant for leaky-wave modes in slotted rectangular waveguide,' IEEE Proceedings-Microwaves, Antennas and Propagation, 1999, pp. 411-415.
[77] JC Coetzee and J Joubert, 'Analysis procedure for arrays of waveguide-slot doublets based on the full T-network equivalent circuit representation of radiators,' IEEE Proceedings-Microwaves, Antennas and Propagation, vol. 147, no. 3, pp. 173-178, 2000.
[78] Jacob C Coetzee, Johan Joubert, and Derek A McNamara, 'Off-center- frequency analysis of a complete planar slotted-waveguide array consisting of subarrays,' IEEE Transactions on Antennas and Propagation, vol. 48, no. 11, pp. 1746-1755, 2000.
[79] Johan Joubert and Johann W Odendaal, 'Analysis and design of wideband reflector gratings in rectangular waveguide,' IEEE Transactions on Plasma Science, vol. 34, no. 3, pp. 659-665, 2006.
[80] Kangjae Jung, Hak-Yong Lee, Gi-Cho Kang, SeungHyun Han, and Byungje Lee, 'Cavity-backed planar slot array antenna with a single waveguide-fed sub-array,' National radio science meeting, 2004, pp. 3273-3276.
[81] M Yousefbeigi, A Enayati, and M Shahabadi, 'Parallel-series feed network with improved G/T performance for high-gain microstrip antenna arrays,' Electronics Letters, vol. 44, no. 3, pp. 180-182, 2008.
[82] C Huang, Z Zhao, Q Feng, and X Luo, 'Suppression of grating lobes from a corrugated 2× 2 slot antenna array with element spacing beyond a wavelength,' IET microwaves, antennas & propagation, vol. 5, no. 13, pp. 1607-1612, 2011.
[83] JF Xu, Wei Hong, Peng Chen, and K Wu, 'Design and implementation of low sidelobe substrate integrated waveguide longitudinal slot array antennas,' IET Microwaves, Antennas & Propagation, vol. 3, no. 5, pp. 790-797, 2009.
[84] Yuichi Kimura, Jiro Hirokawa, and Makoto Ando, 'Alternating-phase single-layer slotted waveguide arrays at 25 GHz band,' 1999 IEEE Antennas and Propagation Society International Symposium, 1999, pp. 142-145.
[85] Yuichi Kimura, Takashi Hirano, Jiro Hirokawa, and Makoto Ando, 'Chokes for alternating-phase fed single-layer slotted waveguide arrays,' 2000 IEEE Antennas and Propagation Society International Symposium, 2000, pp. 82-85.
[86] Daisuke Arai, Miao Zhang, Kimio Sakurai, Jiro Hirokawa, and Makoto Ando, 'Obliquely arranged feed waveguide for alternating-phase fed single-Layer slotted waveguide array,' IEEE Transactions on Antennas and Propagation, vol. 53, no. 2, pp. 594-600, 2005.
[87] Yasuhiro Tsunemitsu, Jiro Hirokawa, and Makoto Ando, 'Center-feed comprised of E to H-plane cross-junctions in an alternating-phase fed single-layer slotted waveguide array,' 2005 IEEE Antennas and Propagation Society International Symposium, 2005, pp. 716-719.
[88] Miao Zhang, Jiro Hirokawa, and M Ando, 'A three-way divider for partially corporate feed in alternating phase-fed single-layer slotted waveguide arrays,' 2005 IEEE Antennas and Propagation Society International Symposium, 2005, pp. 627-630.
[89] Miao Zhang, Jiro Hirokawa, and Makoto Ando, 'Multi-way dividers for partially corporate feed in an alternating phase-fed single-layer slotted waveguide array,' 2006 IEEE Antennas and Propagation Society International Symposium, 2006, pp. 3039-3042.
[90] Yuichi Kimura, Atsuo Senga, Masayoshi Sakai, and Misao Haneishi, 'Design of an alternating-phase fed single-layer slotted waveguide array for a sector shaped beam,' 2007 IEEE Antennas and Propagation Society International Symposium, 2007, pp. 5051-5054.
[91] Miao Zhang, Jiro Hirokawa, and Makoto Ando, 'Full-structure analysis of alternating-phase fed single-layer slotted waveguide arrays,' 2007 IEEE Antennas and Propagation Society International Symposium, 2007, pp. 5905-5908.
[92] Miao Zhang, Jiro Hirokawa, and Makoto Ando, 'A four-way divider for partially-corporate feed in an alternating-phase fed single-layer slotted waveguide array,' IEEE Transactions on Antennas and Propagation, vol. 56, no. 6, pp. 1790-1794, 2008.
[93] Kunio Sakakibara, Yu-ichi Kimura, Akira Akiyama, Jiro Hirokawa, Makoto Ando, and Naohisa Goto, 'Alternating phase-fed waveguide slot arrays with a single-layer multiple-way power divider,' IEEE Proceedings- Microwaves, Antennas and Propagation, 1997, pp. 425-430.
[94] TETSUO Tsugawa, YOSHIHIRO Sugio, and YASUHIRO Yamada, 'Circularly polarized dielectric-loaded planar antenna excited by the parallel feeding waveguide network,' IEEE Transactions on Broadcasting, vol. 43, no. 2, pp. 205-212, 1997.
[95] Richard C Johnson and Henry Jasik, 'Antenna engineering handbook,' New York, McGraw-Hill Book Company, vol. 1, 1984 1984.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71275-
dc.description.abstract具有寬帶寬特性的公司饋電波導縫隙陣列天線被設計用於38GHz(Ka頻帶)和73.5GHz(E頻帶),以便增加工作頻帶和衛星通信頻率處的增益。所提出的天線使用多層饋電結構來實現穩定的製造工藝。對於Ka波段頻率,8×8單元陣列天線顯示27.7 dBi天線增益,天線效率超過80%,超過3.923 GHz或8×8-元素(36.254-40.177 GHz)為10.27%,16×16 - 元素陣列天線顯示33.8 dBi天線增益,天線效率超過80%,超過3.867 GHz或10 16%,16×16-元(36.133-40GHz),32×32-元素陣列顯示39.8 dBi天線增益超過70 32×32-元素(36.19-39.773GHz)的天線效率百分比為3.583 GHz或9.43%。對於E波段頻率,8×8單元陣列天線顯示27.8 dBi天線增益,天線效率超過80%,帶寬為7.016GHz或9.56%(69.9-76.9GHz),而16×16單元陣列天線顯示33.8 dBi天線效率超過80%且天線效率超過7.042 GHz或帶寬為9.6%(69.85-76.9GHz),32×32-元素陣列天線增益為39.9 dBi,天線效率超過70%,超過6.926GHz或9.48%帶寬(69.63-76.55GHz),分別。zh_TW
dc.description.abstractA corporate feed waveguide slot array antenna with broad bandwidth characteristics is designed for the 38-GHz (Ka-band) and 73.5-GHz (E-band) in order to increase the operating frequency band and the gain at the satellite communication frequency. The proposed antennas use multi layer feeding structure for stable fabrication process. For Ka-band frequency, a 8×8-element array antenna shows 27.7 dBi antenna gain with over 80% antenna efficiency and more than 3.923 GHz or 10.27% for 8×8-elements (36.254-40.177 GHz), a 16×16-element array antenna shows 33.8 dBi antenna gain with over 80% antenna efficiency and more than 3.867 GHz or 10.16% for 16×16-elements (36.133-40GHz), and 32×32-element array shows 39.8 dBi antenna gain with over 70% antenna efficiency and more than 3.583 GHz or 9.43% for 32×32-elements (36.19-39.773GHz), respectively. For E-band frequency, an 8×8-element array antenna shows 27.8 dBi antenna gain with over 80% antenna efficiency and 7.016GHz or 9.56% bandwidth (69.9-76.9GHz), while 16×16-element array antenna shows 33.8 dBi antenna gain with over 80% antenna efficiency and more than 7.042 GHz or 9.6% bandwidth (69.85-76.9GHz), and 32×32-element array shows 39.9 dBi antenna gain with over 70% antenna efficiency and more than 6.926GHz or 9.48% bandwidth (69.63-76.55GHz), respectively.en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:02:19Z (GMT). No. of bitstreams: 1
ntu-107-R05942124-1.pdf: 6025179 bytes, checksum: 31ef92562ee67c5f2939ab526ac48fed (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 ii
中文摘要 iii
ABSTRACT iv
ACKNOWLEDGMENTS v
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xi
INTRODUCTION 1
1.1. Background and Motivation 1
1.2. Research Objectives 5
1.3. Contributions 5
1.4. Thesis Organization 6
LITERATURE REVIEW 8
2.1 Waveguides 8
2.1.1. Types of Propagation in Waveguides 8
2.1.2. TEM Waves 9
2.1.3. TE and TM Waves 9
2.1.4. Parallel Plates 11
2.1.5. Rectangular Waveguide 13
2.2 Waveguide-Fed Array 18
2.3 Radiating Element 19
2.4 Feed-Network 22
2.5 Fabrication Methods 24
2.6 Motivation 27
DESIGN OF KA-BAND WAVEGUIDE SLOT ARRAY ANTENNA 31
3.1. Introduction 31
3.2. Design and Simulation Tool 33
3.3. Antenna Array Design 33
3.3.1. 8×8 Subarray Element 33
3.3.2. Numerical Analysis 35
3.3.3. 16×16 Waveguide Slot Array Antenna 46
3.3.4. 32×32 Waveguide Slot Array Antenna 52
DESIGN OF E-BAND WAVEGUIDE SLOT ARRAY ANTENNA 57
4.1. Antenna Array Design 57
4.1.1. 8×8 Subarray Element 57
4.1.2. Numerical Analysis 59
4.1.3. 16×16 Waveguide Slot Array Antenna 68
4.1.4. 32×32 Waveguide Slot Array Antenna 74
CONCLUSION 79
BIBLIOGRAPHY 81
dc.language.isoen
dc.titleKa / E 波段多層全饋法波導縫隙陣列天線zh_TW
dc.titleKa-/E-Band Multi-Layer Full-Corporate-Feed Waveguide Slot Array Antennaen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳宗霖(Tzong-Lin Wu),林怡成(Yi-Cheng Lin),段世中(Shih-Chung Tuan)
dc.subject.keyword波導縫隙陣列,多層結構,全公共饋電波導,高增益,衛星通信,zh_TW
dc.subject.keywordwaveguide slot array,multi-layer structure,full corporate feed waveguide,high gain,satellite communication,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201801752
dc.rights.note有償授權
dc.date.accepted2018-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
5.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved