Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71271
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張書瑋(Shu-Wei Chang)
dc.contributor.authorYu-Bai Xiaoen
dc.contributor.author蕭羽白zh_TW
dc.date.accessioned2021-06-17T05:02:07Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citation[1] Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Yihang Wang, João Marcelo Lamim Ribeiro, and Pratyush Tiwary (2020).
[2] Predicting solar generation from weather forecasts using machine learning. Navin Sharma, Pranshu Sharma, David Irwin, and Prashant Shenoy (2011).
[3] Variational Autoencoder Reconstruction of Complex Many-Body Physics. Luchnikov, A. Ryzhov, P.-J. C. Stas, S. N. Filippov and H. Ouerdane (2019).
[4] Modeling and Optimization for Big Data Analytics. Konstantinos Slavakis, Georgios B. Giannakis, and Gonzalo Mateos (2014).
[5] Learning from Imperfections: Predicting Structure and Thermodynamics from Atomic Imaging of Fluctuations. Lukas Vlcek, Maxim Ziatdinov, Artem Maksov, Alexander Tselev, Arthur P. Baddorf, Sergei V. Kalinin, and Rama K. Vasudevan (2019).
[6] Extracting Crystal Chemistry from Amorphous Carbon Structures. V. L. Deringer, G. Csányi, and D. M. Proserpio, Chem. Phys. Chem. 18, 873 (2017).
[7] Machine Learning Estimates of Natural Product Conformational Energies. M. Rupp, M. R. Bauer, R. Wilcken, A. Lange, M. Reutlinger, F. M. Boeckler, and G. Schneider, PLoS Comput. Biol. 10, e1003400 (2014).
[8] Development of a machine learning potential for graphene. Patrick Rowe, Gábor Csányi, Dario Alfè, and Angelos Michaelides (2018).
[9] Machine learning of molecular electronic properties in chemical compound space. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K. R. Müller, and O. Anatole Von Lilienfeld, New J. Phys. 15, 095003 (2013).
[10] Assessment and validation of machine learning methods for predicting molecular atomization energies. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler,O.A.Von Lilienfeld, A. Tkatchenko, and K. R. Müller, J. Chem. Theory Comput. 9, 3404 (2013).
[11] Machine learning for quantum mechanical properties of atoms in molecules. M. Rupp, R. Ramakrishnan, and O. A. von Lilienfeld, J. Phys. Chem. Lett. 6, 3309 (2015).
[12] Modeling electronic quantum transport with machine learning. A. Lopez-Bezanilla and O. A. von Lilienfeld, Phys. Rev. B 89, 235411 (2014).
[13] Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. K. Hansen, F. Biegler, R. Ramakrishnan,W. Pronobis, O. A.Von Lilienfeld, K. R. Müller, andA.Tkatchenko, J. Phys.Chem. Lett. 6, 2326 (2015).
[14] Ma A, Dinner AR: Automatic method for identifying reaction coordinates in complex systems. J Phys Chem B 2005, 109:6769-6779 PMID:16851762 (2005).
[15] Jang. A Beginner’s Guide to Variational Methods: Mean-Field Approximation. http://blog.evjang.com/2016/08/variational-bayes.html (2016).
[16] Understanding the Variational Lower Bound. Xitong Yang September 13, 2017.
[17] Exploring the selectivity of a ligand complex with CDK2/CDK1: a molecular dynamics simulation approach. Sunil Kumar Tripathia, Sanjeev Kumar Singha, Poonam Singhb,Palanisamy Chellaperumala, Karnati Konda Reddyaand Chandrabose Selvaraj (2012).
[18] Structure-based strategy for drug design and discovery. Irwin D.Kuntz (1992).
[19] Molecular mechanism of cartilage — a bottom-up computational investigation of the aggrecan cleavage site. Deng Li (2019).
[20] Steered Molecular Dynamics Simulations of Force-Induced Protein Domain Unfolding. Hui Lu and Klaus Schulten ()1999.
[21] Bleep-Potential of mean force describing protein-ligand interactions I. generating potential. JOHN B. O. MITCHELL, ROMAN A. LASKOWSKI, ALEXANDER ALEX, JANET M. THORNTON (1999).
[22] A new approach to protein fold recognition. Jones, D. T.; Taylor, W. R.; Thornton, J. M. Nature 1992, 358, 86.
[23] Tertiary structure prediction using mean-force potential and internal energy functions: successful prediction for coiled-coil geometries. O’Donoghue, S. I.; Nilges, M. Fold Des 1997, 2, S47. 11. Vajda, S.; Sippl, M.; Novotny, J. Curr Opin Struct Biol 1997, 7, 222.
[24] Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. Bahar, I.; Jernigan, R. L. J Mol Biol 1997, 266, 195.
[25] Grubmuller, H.; Heymann, B.; Tavan, P. Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force. Science 1996, 271, 997−999.
[26] Steered Molecular Dynamics Simulations for Studying Protein−Ligand Interaction in Cyclin-Dependent Kinase 5 (2014).
[27] Park, S.; Schulten, K. Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys. 2004, 120, 5946−5961.
[28] Li, M. S.; Mai, B. K. Steered Molecular Dynamics-A Promising Tool for Drug Design. Curr. Bioinform. 2012, 7, 342−351.
[29] Introduction to Molecular Dynamics Simulation. Michael P. Allen (2004).
[30] Decomposition of HMX at Extreme Conditions: A Molecular Dynamics Simulation. M. Riad Manaa, Laurence E. Fried, Carl F. Melius, Marcus Elstner, and Th. Frauenheim (2002).
[31] Ab. initio molecular dynamics for liquid metals. G. Kresse and J. Hafner (1993).
[32] Phase Transition for a Hard Sphere System. B. J. ALDER AND T. E. WAINWRIGHT (1957).
[33] Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force. Helmut Grubmuiller, Berthold Heymann, Paul Tavan (1996).
[34] Adhesion forces between individual ligand-receptor pairs. E.-L. Florin, V. T. Moy, H. E. Gaub, Science 264, 415 (1994); V. T. Moy, E.-L. Florin, H. E. Gaub, ibid. 266, 257 (1994).
[35] Åqvist J, Medina1 C, Samuelsson JE. A new method for predicting binding affnity in computer-aided drug design. Protein Eng 1994; 7: 385-391.
[36] Hansson T, Marelius J, Åqvist J. Ligand binding affinity prediction by linear interaction energy methods. J Comput-Aided Mol Des 1998; 12: 27-35.
[37] Srinivasan J, III TEC, Cieplak P, Kollman PA, Case DA. Continuum solvent studies of the stability of DNA, RNA, and Phosphoramidate-DNA helices. J Am Chem Soc 1998; 120: 9401-9409.
[38] Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000; 33: 889-897.
[39] Zwanzig RW. High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J Chem Phys 1954; 22: 1420-1426.
[40] Statistical mechanics of fluid mixtures. Kirkwood JG. Statistical Mechanics of Fluid Mixtures. J Chem Phys 1935; 3: 300-313.
[41] Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struct Biol 1996; 6: 402-406.
[42] An introduction to machine learning. Pierre Lison (2015).
[43] Introduction to Supervised Learning. Erik G. Learned-Miller (2014).
[44] L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed.(Pergamon, Oxford, 1990), Pt. 1, Sec. 15.
[45] An introduction to best practices in free energy calculations. Michael R. Shirts and David L. Mobley (2013).
[46] Multiconfiguration thermodynamic integration T. P. Straatsma and J. A. McCammon (1991).
[47] Laasonen K, Sprik M, Parrinello M, Car R (1993) Ab initio liquid water. J Chem Phys 99:9080.
[48] Makshakova O, Ermakova E (2010) Computational study of hydrogen-bonding complex formation of helical polypeptides with water molecule. J Mol Struct Theochem 942:7–14.
[49] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by error propagation. In Parallel Distributed Processing. Vol 1: Foundations. MIT Press, Cambridge, MA, 1986.
[50] Auto-Encoding Variational Bayes. Diederik P. Kingma and Max Welling, 2013.
[51] An Introduction to Variational Autoencoders. Diederik P. Kingma and Max Welling (2019).
[52] Jarzynski's equality illustrated by simple examples. Humberto H´ıjar and Jos´e M Ortiz de Z´arate (2010).
[53] Jarzynski C 1997 Nonequilibrium equality for free energy differences Phys. Rev. Lett. 78 2690.
[54] Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. C. Jarzynski (1997).
[55] Modeling Pressure-Driven Transport of Proteins Through a Nanochannel. Rogan Carr, Jeffrey Comer, Mark D. Ginsberg, and Aleksei Aksimentiev (2010).
[56] Gating of MscL Studied by Steered Molecular Dynamics. Justin Gullingsrud and Klaus Schulten (2003).
[57] Massively Parallel Implementation of Steered Molecular Dynamics in Tinker-HP: Comparisons of Polarizable and Non Polarizable Simulations of Realistic Systems. Frédéric Célerse, Louis Lagardère, Etienne Derat and Jean-Philip Piquemal (2019).
[58] Park, S.; Khalili-Araghi, F.; Tajkhorshid, E.; Schulten, K. Free energy calculation from steered molecular dynamics simulations using Jarzynski equality. J. Chem. Phys. 2003, 119, 3559−3566.
[59] Stretching Deca-alanine. Sanghyun Park, Fatemeh Khalili and Johan Str¨umpfer, September 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71271-
dc.description.abstract近年來,由於計算機器性能之提升,從有線元素法之於連體力學、分子動力學之於顆粒力學到密度泛函理論之於量子力學,越來越多複雜的物理問題得以用數值模擬方法求解。其中分子動力學更使我們得以用無法從實驗中得到的高時空解析度來探討生物分子的行為,譬如蛋白質之折疊延展與配體基體之結合分離。
但縱使機器發展是如此地蓬勃,分子動力模擬依然有其模型規模與模擬歷時之限制,這兩樣限制分別造成了原子模型與真實世界之差異以及觀測物理量之抽樣不足,繼而導致結果之偏移與不確定性。
同樣受惠於機器發展的另一領域為機器學習。基於神經網絡的概念,機器學習模型藉由自行調整自身參數來學習資料的特徵與流向,在輸入與輸出之間取得一條最佳映射路徑。這項能力使我們能以更簡易的型態來了解巨量且高維度的資料,進而掌握其模式並重建歷史以及預測未來。在其中,有些機器模型在充足學習後甚至能具有「創造性」,如對抗生成網絡以及變分自編碼器。許多研究開始將機器學習納入分子動力模擬以求得更高的計算效率但同時又不失準確性,舉例來說,分子結構、性質之預測與模擬後數據處理。
在此文章中,我們提出藉由機器學習方法輔佐系統自由能計算,以降低分子動力計算負擔。基於分子動力學本立於熱統計力學理論之上,而熱統計力學又實為探討物理性質機率分佈之學問,我們選擇同樣具分佈推論性質的變分自編碼器做為機器學習之模型。我們用此模型學習模擬結果,並嘗試為真實物理性質之分佈與機器學習之潛變數分佈進行連結,進而生成後續計算所需資料。
在本論文中我們提出兩個策略,分別為重建等速下之自由能差異分布與外插慢速模擬之自由能差異。一個簡易數值模型與一個小蛋白分子模型將會作為驗證之標的。結果顯示,在簡易數值模型中,兩個策略皆符合期待。至於小蛋白分子模型,僅策略一有效成功。
zh_TW
dc.description.abstractRecently, scientific computing has progressed a lot in many fields due to the improvement of computational capacity. A number of numerical methods, such as, finite element method (FEM), molecular dynamics (MD) and density functional theory (DFT), have been developed for increasingly complex physical systems. Among these methods, MD allows us to probe the complex process of biophysical systems, such as ligand binding-unbinding and protein folding-unfolding, with a high spatiotemporal resolution [1].
Even though the computational power is at such a high level, there remains limits for the reachable size of simulation models and feasible computational time, which correspond to the complexity and time scale of the systems. These limits lead to the noticeable difference between simulations and reality, and the insufficient sampling of underlying free energy surface and kinetics [1].
Another emerging tool benefiting from the increasing resource and capacity of computational technology is machine learning (ML). Based on the concept of neural network, ML models find the optimal path and mapping between input data and output by learning the features and regularities of data during training. This ability could be used to identify the pattern and to further predict the future [2] or to reconstruct the history [3]. The flexibility and simplicity of ML model also make itself a powerful tool to reveal the characteristics of deluge of data and to transform them into a human comprehensible form [1][4]. Moreover, a generative function of ML model is possible after it understands the data, for instance, generative adversarial network (GAN) and variational autoencoder (VAE) [3][5].
Researchers have proposed new methods based on machine learning (ML) algorithm to seek a higher efficiency for both accuracy and time consuming. Applications include molecular structure prediction [6][7], property prediction [8][9][10][11][12][13] and the post data analyzing [1][14].
In this article, we proposed two methods based on ML to reduce the required computing power for solving the free energy problem with MD simulations. Since MD is based on the theory of thermodynamics, a field of studying the properties, distribution and probability of microscopic states [3], we choose VAE as our ML model for it is established on the variational Bayesian method, a technique allowing us to re-formulate statistical inference problems [15][16]. We intend to use this unsupervised ML model to learn from the MD results and to build the connection between the distributions of microscopic state and the latent variable. Furthermore, we manipulate this relationship and augment the data required for enhancing the post statistical computation.
Two schemes are proposed to increase the efficiency of free energy calculation. One is to predict the free energy curve of slow simulation, another is to reconstruct the distribution of free energy difference. These schemes are discussed on two models. First is a simple numerical model, second is an atomic model of molecular dynamics. The results show that both schemes work for first model, but for the second model only the extrapolating method works.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:02:07Z (GMT). No. of bitstreams: 1
U0001-1808202022335700.pdf: 3838116 bytes, checksum: c0eb12d8a74c7e2ce331da980b25283a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 2
1.2.1 Molecular Dynamic Simulation 2
1.2.2 Steered Molecular Dynamics 3
1.2.3 Machine Learning 3
1.2.4 Free Energy Calculation 4
1.3 Structure of the Thesis 5
Chapter 2 Case I: Two Plates Connected by Springs 6
2.1 Variational Autoencoder 6
2.2 A System of Two Plates Joined by Springs 9
2.3 Result of VAE Embedding 16
2.4 Schemes for Enhancing Free Energy Calculation 20
2.4.1 Scheme I: Extrapolation of Velocity 21
2.4.2 Uncertainty of Linear Regression 27
2.4.3 Scheme II: Free Energy Distribution Reconstruction 32
2.5 Discussion for Two Schemes 40
Chapter 3 Case II: Deca-Alanine Stretching in Vacuum 41
3.1 Steered Molecular Dynamics Simulation of Deca-Alanine Unfolding 41
3.2 Results of SMD Simulations 43
3.3 VAE Enhancement for PMF calculation of Deca-Alanine 45
3.3.1 Structure of VAE Model 46
3.3.2 Result for Extrapolating the Free Energy Curve of Slow Simulation 48
3.3.3 Uncertainty of the Linear Regression 51
3.3.4 Results for Free Energy Distribution Reconstruction 54
3.4 Conclusion of Applying Two Schemes on Deca-Alanine Stretching 57
Chapter 4 Conclusion and Future Work 58
REFERENCE 60
dc.language.isoen
dc.subject機器學習zh_TW
dc.subject平均力勢能zh_TW
dc.subject自由能計算zh_TW
dc.subject變分自編碼器zh_TW
dc.subject分子動力模擬zh_TW
dc.subjectpotential of mean forceen
dc.subjectmachine learningen
dc.subjectmolecular dynamicsen
dc.subjectvariational autoencoderen
dc.subjectfree energy calculationen
dc.title以變分自編碼器輔助平均力勢能之計算zh_TW
dc.titleVariational Autoencoder Enhanced Calculation of
Potential of Mean Force
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee汪立本(Li-Pen Wang),周佳靚(Chia-Ching Chou)
dc.subject.keyword平均力勢能,自由能計算,變分自編碼器,分子動力模擬,機器學習,zh_TW
dc.subject.keywordpotential of mean force,free energy calculation,variational autoencoder,molecular dynamics,machine learning,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202004040
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-1808202022335700.pdf
  未授權公開取用
3.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved