Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71266
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丘臺生
dc.contributor.authorYi-Wen Luen
dc.contributor.author盧怡文zh_TW
dc.date.accessioned2021-06-17T05:01:50Z-
dc.date.available2023-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-24
dc.identifier.citation1. Butte AJ, Dzau VJ, Glueck SB: Further defining housekeeping, or 'maintenance,' genes focus on 'a compendium of gene expression in normal human tissues'. Physiological genomics (2001) 7(2):95-96. doi: 10.1152/ physiolgenomics.2001.7.2.95.
2. Kadota K, Nishimura S, Bono H, Nakamura S, Hayashizaki Y, Okazaki Y, Takahashi K: Detection of genes with tissue-specific expression patterns using akaike's information criterion procedure. Physiological genomics (2003) 12(3):251-259. doi: 10.1152/physiolgenomics.00153.2002.
3. Dezso Z, Nikolsky Y, Sviridov E, Shi W, Serebriyskaya T, Dosymbekov D, Bugrim A, Rakhmatulin E, Brennan RJ, Guryanov A, Li K, Blake J, Samaha RR, Nikolskaya T: A comprehensive functional analysis of tissue specificity of human gene expression. BMC biology (2008) 6(49. doi: 10.1186/ 1741-7007-6-49.
4. Duret L: Evolution of synonymous codon usage in metazoans. Current opinion in genetics & development (2002) 12(6):640-649.
5. Grantham R, Gautier C, Gouy M, Mercier R, Pave A: Codon catalog usage and the genome hypothesis. Nucleic acids research (1980) 8(1):r49-r62.

6. Plotkin JB, Kudla G: Synonymous but not the same: The causes and consequences of codon bias. Nature reviews Genetics (2011) 12(1):32-42. doi: 10.1038/nrg2899.
7. Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F: Codon usage patterns in escherichia coli, bacillus subtilis, saccharomyces cerevisiae, schizosaccharomyces pombe, drosophila melanogaster and homo sapiens; a review of the considerable within-species diversity. Nucleic acids research (1988) 16(17):8207-8211.
8. Hershberg R, Petrov DA: Selection on codon bias. Annual review of genetics (2008) 42(287-299. doi: 10.1146/annurev.genet.42.110807.091442.
9. Ma L, Cui P, Zhu J, Zhang Z, Zhang Z: Translational selection in human: More pronounced in housekeeping genes. Biology direct (2014) 9(17. doi: 10.1186/ 1745-6150-9-17.
10. Shu JJ: A new integrated symmetrical table for genetic codes. Bio Systems (2017) 151(21-26. doi: 10.1016/j.biosystems.2016.11.004.
11. Segundo-Val IS, Sanz-Lozano CS: Introduction to the gene expression analysis. Methods in molecular biology (Clifton, NJ) (2016) 1434(29-43. doi: 10.1007/978-1-4939-3652-6_3.
12. Slonim DK, Yanai I: Getting started in gene expression microarray analysis. PLoS computational biology (2009) 5(10):e1000543. doi: 10.1371/ journal.pcbi.1000543.
13. Trevino V, Falciani F, Barrera-Saldana HA: DNA microarrays: A powerful genomic tool for biomedical and clinical research. Molecular medicine (Cambridge, Mass) (2007) 13(9-10):527-541. doi: 10.2119/ 2006- 00107.Trevino.
14. Zhu J, He F, Hu S, Yu J: On the nature of human housekeeping genes. Trends in genetics : TIG (2008) 24(10):481-484. doi: 10.1016/j.tig.2008.08.004.
15. Robinson SW, Herzyk P, Dow JA, Leader DP: Flyatlas: Database of gene expression in the tissues of drosophila melanogaster. Nucleic acids research (2013) 41(Database issue):D744-750. doi: 10.1093/nar/gks1141.
16. Wolf YI, Novichkov PS, Karev GP, Koonin EV, Lipman DJ: The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. Proceedings of the National Academy of Sciences of the United States of America (2009) 106(18):7273-7280. doi: 10.1073/pnas.0901808106.
17. Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R: Gene duplication as a major force in evolution. Journal of genetics (2013) 92(1):155-161.
18. Kondrashov FA: Gene duplication as a mechanism of genomic adaptation to a changing environment. Proceedings Biological sciences (2012) 279(1749): 5048-5057. doi: 10.1098/rspb.2012.1108.
19. Iniguez LP, Hernandez G: The evolutionary relationship between alternative splicing and gene duplication. Frontiers in genetics (2017) 8(14. doi: 10.3389/ fgene.2017.00014.
20. Chen WH, Minguez P, Lercher MJ, Bork P: Ogee: An online gene essentiality database. Nucleic acids research (2012) 40(Database issue):D901-906. doi: 10.1093/nar/gkr986.
21. Salathe M, Ackermann M, Bonhoeffer S: The effect of multifunctionality on the rate of evolution in yeast. Molecular biology and evolution (2006) 23(4):721-722. doi: 10.1093/molbev/msj086.
22. Paaby AB, Rockman MV: The many faces of pleiotropy. Trends in genetics : TIG (2013) 29(2):66-73. doi: 10.1016/j.tig.2012.10.010.
23. Stearns FW: One hundred years of pleiotropy: A retrospective. Genetics (2010) 186(3):767-773. doi: 10.1534/genetics.110.122549.
24. Payne JL, Wagner A: Constraint and contingency in multifunctional gene regulatory circuits. PLoS computational biology (2013) 9(6):e1003071. doi: 10.1371/journal.pcbi.1003071.
25. Rafikova O, Rafikov R, Nudler E: Catalysis of s-nitrosothiols formation by serum albumin: The mechanism and implication in vascular control. Proceedings of the National Academy of Sciences of the United States of America (2002) 99(9):5913-5918. doi: 10.1073/pnas.092048999.
26. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC: Function of mitochondrial stat3 in cellular respiration. Science (New York, NY) (2009) 323(5915):793-797. doi: 10.1126/science.1164551.
27. Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang Y, You-Ten A, Yeh WC, Ohashi P, Wang X, Mak TW: Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and apaf-1 in apoptosis. Cell (2005) 121(4):579-591. doi: 10.1016/j.cell.2005.03.016.
28. Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho HS, Woodard C, Wang H, Jeong JS, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H: Profiling the human protein-DNA interactome reveals erk2 as a transcriptional repressor of interferon signaling. Cell (2009) 139(3):610-622. doi: 10.1016/ j.cell. 2009. 08.037.
29. Lu M, Ammar D, Ives H, Albrecht F, Gluck SL: Physical interaction between aldolase and vacuolar h+-atpase is essential for the assembly and activity of the proton pump. The Journal of biological chemistry (2007) 282 (34):24495-24503. doi: 10.1074/jbc.M702598200.
30. Bosch J, Buscaglia CA, Krumm B, Ingason BP, Lucas R, Roach C, Cardozo T, Nussenzweig V, Hol WG: Aldolase provides an unusual binding site for thrombospondin-related anonymous protein in the invasion machinery of the malaria parasite. Proceedings of the National Academy of Sciences of the United States of America (2007) 104(17):7015-7020. doi: 10.1073/ pnas.0605301104.
31. Sengupta S, Ghosh S, Nagaraja V: Moonlighting function of glutamate racemase from mycobacterium tuberculosis: Racemization and DNA gyrase inhibition are two independent activities of the enzyme. Microbiology (Reading, England) (2008) 154(Pt9):2796-2803. doi: 10.1099/ mic.0.2008/ 020933-0.
32. Hendriks W, Mulders JW, Bibby MA, Slingsby C, Bloemendal H, de Jong WW: Duck lens epsilon-crystallin and lactate dehydrogenase b4 are identical: A single-copy gene product with two distinct functions. Proceedings of the National Academy of Sciences of the United States of America (1988) 85(19):7114-7118.
33. Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O'Donovan C: The goa database: Gene ontology annotation updates for 2015. Nucleic acids research (2015) 43(Database issue): D1057-1063. doi: 10.1093/nar/gku1113.
34. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature genetics (2000) 25(1):25-29. doi: 10.1038/75556.
35. Gillis J, Pavlidis P: The impact of multifunctional genes on 'guilt by association' analysis. PloS one (2011) 6(2):e17258. doi: 10.1371/ journal.pone.0017258.
36. Gillis J, Pavlidis P: 'Guilt by association' is the exception rather than the rule in gene networks. PLoS computational biology (2012) 8(3):e1002444. doi: 10.1371/journal.pcbi.1002444.
37. Gillis J, Pavlidis P: Assessing identity, redundancy and confounds in gene ontology annotations over time. Bioinformatics (Oxford, England) (2013) 29(4):476-482. doi: 10.1093/bioinformatics/bts727.
38. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F: Proteomics. Tissue-based map of the human proteome. Science (New York, NY) (2015) 347 (6220):1260419. doi: 10.1126/science.1260419.
39. De Las Rivas J, Fontanillo C: Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS computational biology (2010) 6(6):e1000807. doi: 10.1371/journal.pcbi.1000807.
40. Sokolina K, Kittanakom S, Snider J, Kotlyar M, Maurice P, Gandia J, Benleulmi-Chaachoua A, Tadagaki K, Oishi A, Wong V, Malty RH, Deineko V, Aoki H, Amin S, Yao Z, Morato X, Otasek D, Kobayashi H, Menendez J, Auerbach D, Angers S, Przulj N, Bouvier M, Babu M, Ciruela F, Jockers R, Jurisica I, Stagljar I: Systematic protein-protein interaction mapping for clinically relevant human gpcrs. Molecular systems biology (2017) 13(3):918. doi: 10.15252/msb.20167430.
41. Hauser R, Ceol A, Rajagopala SV, Mosca R, Siszler G, Wermke N, Sikorski P, Schwarz F, Schick M, Wuchty S, Aloy P, Uetz P: A second-generation protein-protein interaction network of helicobacter pylori. Molecular & cellular proteomics : MCP (2014) 13(5):1318-1329. doi: 10.1074/mcp.O113.033571.
42. Sung MK, Huh WK: In vivo quantification of protein-protein interactions in saccharomyces cerevisiae using bimolecular fluorescence complementation assay. Journal of microbiological methods (2010) 83(2):194-201. doi: 10.1016/j.mimet.2010.08.021.
43. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature (2000) 403(6770):623-627. doi: 10.1038/35001009.
44. Rohila JS, Chen M, Cerny R, Fromm ME: Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. The Plant journal : for cell and molecular biology (2004) 38(1):172-181. doi: 10.1111/j.1365-313X.2004.02031.x.
45. MacBeath G, Schreiber SL: Printing proteins as microarrays for high-throughput function determination. Science (New York, NY) (2000) 289(5485):1760-1763.
46. Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CW, Fields S, Boone C, Cesareni G: A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science (New York, NY) (2002) 295(5553):321-324. doi: 10.1126/science.1064987.
47. Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, Gavin BJ, Kley N, Kaelin WG, Jr., Iliopoulos O: The von hippel-lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Molecular cell (1998) 1(7):959-968.
48. Schuck P: Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annual review of biophysics and biomolecular structure (1997) 26(541-566. doi: 10.1146/annurev.biophys.26.1.541.
49. Miyawaki A, Tsien RY: Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods in enzymology (2000) 327(472-500.
50. Kobe B, Guncar G, Buchholz R, Huber T, Maco B, Cowieson N, Martin JL, Marfori M, Forwood JK: Crystallography and protein-protein interactions: Biological interfaces and crystal contacts. Biochemical Society transactions (2008) 36(Pt 6):1438-1441. doi: 10.1042/bst0361438.
51. O'Connell MR, Gamsjaeger R, Mackay JP: The structural analysis of protein-protein interactions by nmr spectroscopy. Proteomics (2009) 9(23):5224-5232. doi: 10.1002/pmic.200900303.
52. Stynen B, Tournu H, Tavernier J, Van Dijck P: Diversity in genetic in vivo methods for protein-protein interaction studies: From the yeast two-hybrid system to the mammalian split-luciferase system. Microbiology and molecular biology reviews : MMBR (2012) 76(2):331-382. doi: 10.1128/mmbr.05021-11.
53. Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature (1989) 340(6230):245-246. doi: 10.1038/340245a0.
54. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The database of interacting proteins: 2004 update. Nucleic acids research (2004) 32(Database issue):D449-451. doi: 10.1093/nar/gkh086.
55. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H: The mintact project--intact as a common curation platform for 11 molecular interaction databases. Nucleic acids research (2014) 42(Database issue):D358-363. doi: 10.1093/nar/gkt1115.
56. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M: The biogrid interaction database: 2017 update. Nucleic acids research (2017) 45(D1):D369-d379. doi: 10.1093/nar/gkw1102.
57. Schaeffer RD, Daggett V: Protein folds and protein folding. Protein engineering, design & selection : PEDS (2011) 24(1-2):11-19. doi: 10.1093/protein/gzq096.
58. Martinez Cuesta S, Furnham N, Rahman SA, Sillitoe I, Thornton JM: The evolution of enzyme function in the isomerases. Current opinion in structural biology (2014) 26(121-130. doi: 10.1016/j.sbi.2014.06.002.
59. Mosca R, Ceol A, Stein A, Olivella R, Aloy P: 3did: A catalog of domain-based interactions of known three-dimensional structure. Nucleic acids research (2014) 42(Database issue):D374-379. doi: 10.1093/nar/gkt887.
60. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M: Pfam: The protein families database. Nucleic acids research (2014) 42(Database issue):D222-230. doi: 10.1093/nar/gkt1223.
61. Jubb HC, Pandurangan AP, Turner MA, Ochoa-Montano B, Blundell TL, Ascher DB: Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. Progress in biophysics and molecular biology (2017) 128(3-13. doi: 10.1016/j.pbiomolbio.2016.10.002.
62. Valastyan JS, Lindquist S: Mechanisms of protein-folding diseases at a glance. Disease models & mechanisms (2014) 7(1):9-14. doi: 10.1242/dmm.013474.
63. Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends in ecology & evolution (2000) 15(12):496-503. doi:
64. Suzuki Y, Gojobori T: A method for detecting positive selection at single amino acid sites. Molecular biology and evolution (1999) 16(10):1315-1328. doi: 10.1093/oxfordjournals.molbev.a026042.
65. Hurst LD: The ka/ks ratio: Diagnosing the form of sequence evolution. Trends in genetics : TIG (2002) 18(9):486.
66. Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum DM, White TJ, Sninsky JJ, Hernandez RD, Civello D, Adams MD, Cargill M, Clark AG: Natural selection on protein-coding genes in the human genome. Nature (2005) 437(7062):1153-1157. doi: 10.1038/ nature04240.
67. Zhang L, Li WH: Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Molecular biology and evolution (2004) 21(2):236-239. doi: 10.1093/molbev/msh010.
68. Pal C, Papp B, Hurst LD: Highly expressed genes in yeast evolve slowly. Genetics (2001) 158(2):927-931.
69. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH: Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences of the United States of America (2005) 102(40):14338-14343. doi: 10.1073/pnas.0504070102.
70. Wall DP, Hirsh AE, Fraser HB, Kumm J, Giaever G, Eisen MB, Feldman MW: Functional genomic analysis of the rates of protein evolution. Proceedings of the National Academy of Sciences of the United States of America (2005) 102(15): 5483-5488. doi: 10.1073/pnas.0501761102.
71. Hirsh AE, Fraser HB: Protein dispensability and rate of evolution. Nature (2001) 411(6841):1046-1049. doi: 10.1038/35082561.
72. Zhang J, He X: Significant impact of protein dispensability on the instantaneous rate of protein evolution. Molecular biology and evolution (2005) 22(4):1147-1155. doi: 10.1093/molbev/msi101.
73. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW: Evolutionary rate in the protein interaction network. Science (New York, NY) (2002) 296(5568):750-752. doi: 10.1126/science.1068696.
74. Hahn MW, Kern AD: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Molecular biology and evolution (2005) 22(4):803-806. doi: 10.1093/molbev/msi072.
75. Kim PM, Lu LJ, Xia Y, Gerstein MB: Relating three-dimensional structures to protein networks provides evolutionary insights. Science (New York, NY) (2006) 314(5807):1938-1941. doi: 10.1126/science.1136174.
76. Winter EE, Goodstadt L, Ponting CP: Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome research (2004) 14(1):54-61. doi: 10.1101/gr.1924004.
77. Davis JC, Brandman O, Petrov DA: Protein evolution in the context of drosophila development. Journal of molecular evolution (2005) 60(6):774-785. doi: 10.1007/s00239-004-0241-2.
78. Good JM, Nachman MW: Rates of protein evolution are positively correlated with developmental timing of expression during mouse spermatogenesis. Molecular biology and evolution (2005) 22(4):1044-1052. doi: 10.1093/molbev/msi087.
79. Piasecka B, Lichocki P, Moretti S, Bergmann S, Robinson-Rechavi M: The hourglass and the early conservation models--co-existing patterns of developmental constraints in vertebrates. PLoS genetics (2013) 9(4):e1003476. doi: 10.1371/journal.pgen.1003476.
80. Carvalho AB, Clark AG: Intron size and natural selection. Nature (1999) 401(6751):344. doi: 10.1038/43827.
81. Marais G, Nouvellet P, Keightley PD, Charlesworth B: Intron size and exon evolution in drosophila. Genetics (2005) 170(1):481-485. doi: 10.1534/ genetics.104.037333.
82. Comeron JM, Kreitman M: The correlation between intron length and recombination in drosophila. Dynamic equilibrium between mutational and selective forces. Genetics (2000) 156(3):1175-1190.
83. He X, Zhang J: Toward a molecular understanding of pleiotropy. Genetics (2006) 173(4):1885-1891. doi: 10.1534/genetics.106.060269.
84. Bloom JD, Drummond DA, Arnold FH, Wilke CO: Structural determinants of the rate of protein evolution in yeast. Molecular biology and evolution (2006) 23(9):1751-1761. doi: 10.1093/molbev/msl040.
85. Comeron JM, Kreitman M, Aguade M: Natural selection on synonymous sites is correlated with gene length and recombination in drosophila. Genetics (1999) 151(1):239-249.
86. Duret L, Mouchiroud D: Expression pattern and, surprisingly, gene length shape codon usage in caenorhabditis, drosophila, and arabidopsis. Proceedings of the National Academy of Sciences of the United States of America (1999) 96(8):4482-4487.
87. Wolf MY, Wolf YI, Koonin EV: Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution. Biology direct (2008) 3(40. doi: 10.1186/1745-6150-3-40.
88. Podder S, Mukhopadhyay P, Ghosh TC: Multifunctionality dominantly determines the rate of human housekeeping and tissue specific interacting protein evolution. Gene (2009) 439(1-2):11-16. doi: 10.1016/j.gene. 2009. 03.005.
89. Drummond DA, Raval A, Wilke CO: A single determinant dominates the rate of yeast protein evolution. Molecular biology and evolution (2006) 23(2):327-337. doi: 10.1093/molbev/msj038.
90. Stoletzki N, Eyre-Walker A: Synonymous codon usage in escherichia coli: Selection for translational accuracy. Molecular biology and evolution (2007) 24(2):374-381. doi: 10.1093/molbev/msl166.
91. Warren AS, Anandakrishnan R, Zhang L: Functional bias in molecular evolution rate of arabidopsis thaliana. BMC evolutionary biology (2010) 10(125. doi: 10.1186/1471-2148-10-125.
92. Rocha EP, Danchin A: An analysis of determinants of amino acids substitution rates in bacterial proteins. Molecular biology and evolution (2004) 21(1):108-116. doi: 10.1093/molbev/msh004.
93. Subramanian S, Kumar S: Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics (2004) 168(1):373-381. doi: 10.1534/genetics.104.028944.
94. Wright SI, Yau CB, Looseley M, Meyers BC: Effects of gene expression on molecular evolution in arabidopsis thaliana and arabidopsis lyrata. Molecular biology and evolution (2004) 21(9):1719-1726. doi: 10.1093/molbev/msh191.
95. Quax TE, Claassens NJ, Soll D, van der Oost J: Codon bias as a means to fine-tune gene expression. Molecular cell (2015) 59(2):149-161. doi: 10.1016/j.molcel.2015.05.035.
96. Alba MM, Castresana J: Inverse relationship between evolutionary rate and age of mammalian genes. Molecular biology and evolution (2005) 22(3):598-606. doi: 10.1093/molbev/msi045.
97. Montanucci L, Laayouni H, Dall'Olio GM, Bertranpetit J: Molecular evolution and network-level analysis of the n-glycosylation metabolic pathway across primates. Molecular biology and evolution (2011) 28(1):813-823. doi: 10.1093/molbev/msq259.
98. Knight RD, Freeland SJ, Landweber LF: A simple model based on mutation and selection explains trends in codon and amino-acid usage and gc composition within and across genomes. Genome biology (2001) 2(4):Research0010.
99. Nabiyouni M, Prakash A, Fedorov A: Vertebrate codon bias indicates a highly gc-rich ancestral genome. Gene (2013) 519(1):113-119. doi: 10.1016/ j.gene. 2013.01.033.
100. Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH: Codon usage between genomes is constrained by genome-wide mutational processes. Proceedings of the National Academy of Sciences of the United States of America (2004) 101(10):3480-3485. doi: 10.1073/pnas.0307827100.
101. Sharp PM, Li WH: An evolutionary perspective on synonymous codon usage in unicellular organisms. Journal of molecular evolution (1986) 24(1-2):28-38.
102. Zhou Z, Dang Y, Zhou M, Li L, Yu CH, Fu J, Chen S, Liu Y: Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proceedings of the National Academy of Sciences of the United States of America (2016) 113(41):E6117-e6125. doi: 10.1073/pnas.1606724113.
103. Moriyama EN, Powell JR: Gene length and codon usage bias in drosophila melanogaster, saccharomyces cerevisiae and escherichia coli. Nucleic acids research (1998) 26(13):3188-3193.
104. Marais G, Duret L: Synonymous codon usage, accuracy of translation, and gene length in caenorhabditis elegans. Journal of molecular evolution (2001) 52(3):275-280.
105. Novoa EM, Pavon-Eternod M, Pan T, Ribas de Pouplana L: A role for trna modifications in genome structure and codon usage. Cell (2012) 149(1):202-213. doi: 10.1016/j.cell.2012.01.050.
106. Grosjean H, Fiers W: Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene (1982) 18(3):199-209.
107. Duret L: Trna gene number and codon usage in the c. Elegans genome are co-adapted for optimal translation of highly expressed genes. Trends in genetics : TIG (2000) 16(7):287-289.
108. Sabi R, Tuller T: Modelling the efficiency of codon-trna interactions based on codon usage bias. DNA research : an international journal for rapid publication of reports on genes and genomes (2014) 21(5):511-526. doi: 10.1093/ dnares/dsu017.
109. Moriyama EN, Powell JR: Codon usage bias and trna abundance in drosophila. Journal of molecular evolution (1997) 45(5):514-523.
110. Gu W, Zhou T, Ma J, Sun X, Lu Z: The relationship between synonymous codon usage and protein structure in escherichia coli and homo sapiens. Bio Systems (2004) 73(2):89-97. doi: 10.1016/j.biosystems.2003.10.001.
111. Zhao F, Yu CH, Liu Y: Codon usage regulates protein structure and function by affecting translation elongation speed in drosophila cells. Nucleic acids research (2017) 45(14):8484-8492. doi: 10.1093/nar/gkx501.
112. Angov E: Codon usage: Nature's roadmap to expression and folding of proteins. Biotechnology journal (2011) 6(6):650-659. doi: 10.1002/ biot. 201000332.
113. Liu Q: Mutational bias and translational selection shaping the codon usage pattern of tissue-specific genes in rice. PloS one (2012) 7(10):e48295. doi: 10.1371/journal.pone.0048295.
114. Chen H, Sun S, Norenburg JL, Sundberg P: Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (nemertea). PloS one (2014) 9(1):e85631. doi: 10.1371/journal.pone.0085631.
115. Bohlin J, Brynildsrud O, Vesth T, Skjerve E, Ussery DW: Amino acid usage is asymmetrically biased in at- and gc-rich microbial genomes. PloS one (2013) 8(7):e69878. doi: 10.1371/journal.pone.0069878.
116. Chen L, Liu T, Yang D, Nong X, Xie Y, Fu Y, Wu X, Huang X, Gu X, Wang S, Peng X, Yang G: Analysis of codon usage patterns in taenia pisiformis through annotated transcriptome data. Biochemical and biophysical research communications (2013) 430(4):1344-1348. doi: 10.1016/j.bbrc.2012.12.078.
117. Chaney JL, Clark PL: Roles for synonymous codon usage in protein biogenesis. Annual review of biophysics (2015) 44(143-166. doi: 10.1146/ annurev-biophys-060414-034333.
118. Pechmann S, Frydman J: Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nature structural & molecular biology (2013) 20(2):237-243. doi: 10.1038/nsmb.2466.
119. Zhou T, Weems M, Wilke CO: Translationally optimal codons associate with structurally sensitive sites in proteins. Molecular biology and evolution (2009) 26(7):1571-1580. doi: 10.1093/molbev/msp070.
120. Hubbell E, Liu WM, Mei R: Robust estimators for expression analysis. Bioinformatics (Oxford, England) (2002) 18(12):1585-1592.
121. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even A, Horn-Saban S, Safran M, Domany E, Lancet D, Shmueli O: Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics (Oxford, England) (2005) 21(5):650-659. doi: 10.1093/bioinformatics/bti042.
122. Podder S, Ghosh TC: Exploring the differences in evolutionary rates between monogenic and polygenic disease genes in human. Molecular biology and evolution (2010) 27(4):934-941. doi: 10.1093/molbev/msp297.
123. Bennetzen JL, Hall BD: Codon selection in yeast. The Journal of biological chemistry (1982) 257(6):3026-3031.
124. Wright F: The 'effective number of codons' used in a gene. Gene (1990) 87(1):23-29.
125. Librado P, Rozas J: Dnasp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) (2009) 25(11): 1451 - 1452. doi: 10.1093/bioinformatics/btp187.
126. Zhou T, Gu W, Ma J, Sun X, Lu Z: Analysis of synonymous codon usage in h5n1 virus and other influenza a viruses. Bio Systems (2005) 81(1):77-86. doi: 10.1016/j.biosystems.2005.03.002.
127. Kim PM, Sboner A, Xia Y, Gerstein M: The role of disorder in interaction networks: A structural analysis. Molecular systems biology (2008) 4(179. doi: 10.1038/msb.2008.16.
128. Activities at the universal protein resource (uniprot). Nucleic acids research (2014) 42(Database issue):D191-198. doi: 10.1093/nar/gkt1140.
129. Crosby MA, Goodman JL, Strelets VB, Zhang P, Gelbart WM: Flybase: Genomes by the dozen. Nucleic acids research (2007) 35(Database issue):D486-491. doi: 10.1093/nar/gkl827.
130. Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV: Orthodb: A hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic acids research (2013) 41(Database issue):D358-365. doi: 10.1093/nar/gks1116.
131. Tamura K, Subramanian S, Kumar S: Temporal patterns of fruit fly (drosophila) evolution revealed by mutation clocks. Molecular biology and evolution (2004) 21(1):36-44. doi: 10.1093/molbev/msg236.
132. Marais G, Domazet-Loso T, Tautz D, Charlesworth B: Correlated evolution of synonymous and nonsynonymous sites in drosophila. Journal of molecular evolution (2004) 59(6):771-779. doi: 10.1007/s00239-004-2671-2.
133. Yang Z: Paml: A program package for phylogenetic analysis by maximum likelihood. Computer applications in the biosciences : CABIOS (1997) 13(5):555-556.
134. Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular biology and evolution (2000) 17(1):32-43. doi: 10.1093/oxfordjournals.molbev.a026236.
135. Carlini DB, Stephan W: In vivo introduction of unpreferred synonymous codons into the drosophila adh gene results in reduced levels of adh protein. Genetics (2003) 163(1):239-243.
136. Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, Ludwig C, Schafer F, Graf M, Wagner R: Multiparameter rna and codon optimization: A standardized tool to assess and enhance autologous mammalian gene expression. PloS one (2011) 6(3):e17596. doi: 10.1371/journal.pone.0017596.
137. Vicario S, Moriyama EN, Powell JR: Codon usage in twelve species of drosophila. BMC evolutionary biology (2007) 7(226. doi: 10.1186/ 1471-2148-7-226.
138. Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M: High guanine and cytosine content increases mrna levels in mammalian cells. PLoS biology (2006) 4(6):e180. doi: 10.1371/journal.pbio.0040180.
139. Newman ZR, Young JM, Ingolia NT, Barton GM: Differences in codon bias and gc content contribute to the balanced expression of tlr7 and tlr9. Proceedings of the National Academy of Sciences of the United States of America (2016) 113(10):E1362-1371. doi: 10.1073/pnas.1518976113.
140. Zamft B, Bintu L, Ishibashi T, Bustamante C: Nascent rna structure modulates the transcriptional dynamics of rna polymerases. Proceedings of the National Academy of Sciences of the United States of America (2012) 109(23): 8948-8953. doi: 10.1073/pnas.1205063109.
141. Yan X, Hoek TA, Vale RD, Tanenbaum ME: Dynamics of translation of single mrna molecules in vivo. Cell (2016) 165(4):976-989. doi: 10.1016/ j.cell.2016.04.034.
142. Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP: Improved ribosome-footprint and mrna measurements provide insights into dynamics and
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71266-
dc.description.abstract管家基因是維持細胞基礎功能及細胞存活的重要基因,因為管家基因在生物體的重要性,故本論文採用昆蟲的模式生物-黑腹果蠅來進行管家基因之相關研究。本論文的研究目標為: 1)研究黑腹果蠅管家基因的生物特性, 2) 研究影響黑腹果蠅管家基因演化速率的可能因子,以及 3) 研究影響黑腹果蠅管家基因密碼子使用偏性的可能因子。本論文使用生物資訊的方法,對黑腹果蠅1,107個管家基因及1,084 個高組織特異性基因來進行相關分析,在比較分析這兩群基因的各種生物特性時,發現這兩群基因存在很大的差別,管家基因的演化速率比高組織特異性基因要慢,表示管家基因在演化較為保守。進一步分析可能影響管家基因的演化速率的因子,發現可能的相關因子為:密碼子使用偏性、基因表現量、世系年齡、蛋白質交互作用的情形、蛋白質作用部位的占比、以及蛋白質的多功性,利用淨相關分析發現密碼子使用偏性是影響管家基因的演化速率最主要的可能因子。本論文再進階分析影響管家基因密碼子使用偏性的因子,分析結果發現偏性突變及轉譯篩選可能是影響管家基因密碼子使用偏性的重要因子,而蛋白質交互作用的情形以及蛋白質作用部位的占比同樣為影響管家基因密碼子使用偏性的可能因子。本論文探討昆蟲模式生物-黑腹果蠅其管家基因的生物特性及分子演化的研究結果,期能作為未來生醫及農業相關應用研究之基礎。zh_TW
dc.description.abstractHousekeeping genes (HK genes) are required for cell survival and the maintenance of basic cellular functions. This thesis focused on the research of HK genes in Drosophila melanogaster. The aims of this thesis were: 1) investigation of biological characteristics in HK genes, 2) investigation of factors affecting evolution rates in HK genes, 3) investigation of factors affecting codon usage patterns in HK genes. In this thesis, bioinformatics approaches were employed to analyze 1,107 HK genes and 1,084 high tissue specificity genes (HTS genes) of D. melanogaster. The comparisons of multiple biological characteristics between these two gene groups suggested that these characteristics were significantly different between these two groups. The average evolutionary rate of HK genes is slower than that of HTS genes. To identify the possible factors that constrain the evolutionary rates of HK genes, several factors were analyzed herein. Codon usage bias (CUB), gene expression level, phyletic age, protein connectivity, proportion of protein interacting length and protein multifunctionality were found to be related to the influence on evolutionary rates of HK genes. Partial correlation analysis revealed that CUB has the strongest influence than other factors on influencing the evolutionary rate variation between these two gene groups. Therefore, further analyses were made to identify the factors that potentially influence the CUB of HK genes. The results suggested that mutation pressure and natural selection highly correlate with CUB in the HK genes and two topological properties of HK proteins (proportion of protein interacting length and protein connectivity) also correlate with CUB in the HK genes. The results provide more insight into biological characteristics and the molecular evolution in the HK genes of D. melanogaster, and the results may support future investigations of potential applications in agricultural and biomedical field.en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:01:50Z (GMT). No. of bitstreams: 1
ntu-107-D96b41001-1.pdf: 7846721 bytes, checksum: 56c6585265724699d86162ecf6f890bf (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝(Acknowledgement)-i
中文摘要(Chinese Abstract)-ii
Abstract-iii
Contents-v
Abbreviation list-viii
List of Figures-ix
List of Tables-xi
1. Introduction-1
1.1 Comparing biological characteristics between HK genes and HTS genes-1
1.1.1 Synonymous codon usage bias-2
1.1.2 Gene expression level-4
1.1.3 Phyletic age-5
1.1.4 Multifunctionality-6
1.1.5 Proteinprotein interaction-7
1.1.6 Percentage of protein interacting length-9
1.1.7 Evolutionary rate-10
1.2 Factors correlate with evolutionary rate-12
1.2.1 Synonymous codon usage bias-12
1.2.2 Gene expression level-13
1.2.3 Phyletic age-13
1.2.4 Multifunctionality-14
1.2.5 Protein connectivity-14
1.2.6 Percentage of protein interacting length-15
1.3 Factors correlate with synonymous codon usage bias-15
1.3.1 Mutation bias-16
1.3.2 Translational selection-16
1.3.3 Protein structure and protein connectivity-17
2. Material and Methods-18
2.1 Gene expression data-18
2.2 Tissue specificity-18
2.3 Codon usage bias analysis-19
2.4 Nucleotide composition-20
2.5 Percentage of protein interacting length-21
2.6 Proteinprotein interaction data-21
2.7 Estimation of evolutionary rates-22
2.8 Multifunctionality analysis-22
2.9 Phyletic age-22
2.10 Statistical analyses-23
3. Results-24
3.1 Comparative analysis of HK genes and HTS genes in biological characteristics-24
3.1.1 Gene expression level-24
3.1.2 Evolutionary rate-24
3.1.3 Phyletic age-25
3.1.4 Synonymous codon usage bias-25
3.1.5 Protein connectivity-26
3.1.6 Multifunctionality-26
3.1.7 Percentage of protein interacting length-26
3.2 Factors that correlate differences between evolutionary rates of HK genes and HTS genes-27
3.3 Factors that correlate synonymous codon usage bias of HK genes-28
3.3.1 GC3 content and gene expression level correlate with the CUB of HK genes-29
3.3.2 Proportion of protein interacting length and protein connectivity correlate with the CUB of HK genes-30
4. Discussion-32
4.1 Evolutionary rate-32
4.2 Synonymous codon usage bias-32
4.3 Gene expression level- 38
4.4 Phyletic age-39
4.5 Functionrelated properties-39
5. Conclusion Remark-41
Figures-42
Tables-60
References-68
dc.language.isoen
dc.title黑腹果蠅管家基因之研究-以生物特性及分子演化之觀點zh_TW
dc.titleStudy on Housekeeping Genes in Drosophila melanogaster-Based on Biological Characteristics and Molecular Evolutionen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor林仲彥
dc.contributor.oralexamcommittee于宏燦,陳瑞芬,陳治宇
dc.subject.keyword管家基因,組織特異性,生物特性,演化速率,密碼子使用偏性,zh_TW
dc.subject.keywordhousekeeping gene,tissue specificity,evolutionary rate,codon usage bias,biological properties,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201801917
dc.rights.note有償授權
dc.date.accepted2018-07-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
7.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved