Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 職能治療學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71248
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林克忠(Keh-Chung Lin)
dc.contributor.authorChung-Shan Hungen
dc.contributor.author洪從善zh_TW
dc.date.accessioned2021-06-17T05:00:51Z-
dc.date.available2019-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-25
dc.identifier.citationAckerley, S. J., Byblow, W. D., Barber, P. A., MacDonald, H., McIntyre-Robinson, A., & Stinear, C. M. (2016). Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients. Neurorehabilitation and Neural Repair, 30(4), 339-348. doi:10.1177/1545968315595285
Ada, L., Dorsch, S., & Canning, C. G. (2006). Strengthening interventions increase strength and improve activity after stroke: a systematic review. The Australian journal of physiotherapy, 52(4), 241-248.
Association, S., Stroke, I. W. P. f., Effectiveness, R. C. o. P. o. L. C., & Unit, E. (2004). National Clinical Guidelines for Stroke: Clinical Effectiveness & Evaluation Unit, Royal College of Physicians.
Bang, D. H., Shin, W. S., & Choi, H. S. (2015). Effects of modified constraint-induced movement therapy combined with trunk restraint in chronic stroke: A double-blinded randomized controlled pilot trial. NeuroRehabilitation, 37(1), 131-137. doi:10.3233/NRE-151245
Barreca, S., Gowland, C. K., Stratford, P., Huijbregts, M., Griffiths, J., Torresin, W., . . . Masters, L. (2004). Development of the Chedoke Arm and Hand Activity Inventory: theoretical constructs, item generation, and selection. Topics in Stroke Rehabilitation, 11(4), 31-42. doi:10.1310/JU8P-UVK6-68VW-CF3W
Barreca, S. R., Stratford, P. W., Lambert, C. L., Masters, L. M., & Streiner, D. L. (2005). Test-retest reliability, validity, and sensitivity of the Chedoke arm and hand activity inventory: a new measure of upper-limb function for survivors of stroke. Archives of Physical Medicine and Rehabilitation, 86(8), 1616-1622. doi:10.1016/j.apmr.2005.03.017
Barzel, A., Ketels, G., Stark, A., Tetzlaff, B., Daubmann, A., Wegscheider, K., . . . Scherer, M. (2015). Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): a cluster-randomised, controlled trial. Lancet Neurology, 14(9), 893-902. doi:10.1016/S1474-4422(15)00147-7
Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B., & Amirabdollahian, F. (2014). Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of Neuroengineering and Rehabilitation, 11, 111. doi:10.1186/1743-0003-11-111
Birkenmeier, R. L., Prager, E. M., & Lang, C. E. (2010). Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabilitation and Neural Repair, 24(7), 620-635. doi:10.1177/1545968310361957
Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical Therapy in Sport 67(2), 206-207.
Bondi, M., Zeilig, G., Bloch, A., Fasano, A., & Plotnik, M. (2017). Split-arm swinging: the effect of arm swinging manipulation on interlimb coordination during walking. Journal of Neurophysiology, 118(2), 1021-1033. doi:10.1152/jn.00130.2017
Boonstra, A. M., Schiphorst Preuper, H. R., Reneman, M. F., Posthumus, J. B., & Stewart, R. E. (2008). Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. International Journal of Rehabilitation Research, 31(2), 165-169. doi:10.1097/MRR.0b013e3282fc0f93
Bowden, M. G., Woodbury, M. L., & Duncan, P. W. (2013). Promoting neuroplasticity and recovery after stroke: future directions for rehabilitation clinical trials. Current Opinion in Neurology, 26(1), 37-42. doi:10.1097/WCO.0b013e32835c5ba0
Boyd, L. A., Vidoni, E. D., & Wessel, B. D. (2010). Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change? Neuroscience Letters, 482(1), 21-25. doi:10.1016/j.neulet.2010.06.082
Brinkman, C. (1984). Supplementary motor area of the monkey's cerebral cortex: short- and long-term deficits after unilateral ablation and the effects of subsequent callosal section. Journal of Neuroscience, 4(4), 918-929.
Burgar, C. G., Lum, P. S., Shor, P. C., & Machiel Van der Loos, H. F. (2000). Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. Journal of Rehabilitation Research and Development, 37(6), 663-673.
Byblow, W. D., Stinear, C. M., Smith, M. C., Bjerre, L., Flaskager, B. K., & McCambridge, A. B. (2012). Mirror symmetric bimanual movement priming can increase corticomotor excitability and enhance motor learning. PloS One, 7(3), e33882. doi:10.1371/journal.pone.0033882
Cardoso de Oliveira, S. (2002). The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psychologica, 110(2-3), 139-159.
Carroll, T. J., Herbert, R. D., Munn, J., Lee, M., & Gandevia, S. C. (2006). Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol (1985), 101(5), 1514-1522. doi:10.1152/japplphysiol.00531.2006
Casadio, M., & Sanguineti, V. (2012). Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(3), 286-296. doi:10.1109/TNSRE.2012.2190827
Chang, W. H., & Kim, Y. H. (2013). Robot-assisted therapy in stroke rehabilitation. Journal of Stroke, 15(3), 174-181. doi:10.5853/jos.2013.15.3.174
Chuang, I. C., Lin, K. C., Wu, C. Y., Hsieh, Y. W., Liu, C. T., & Chen, C. L. (2017). Using Rasch Analysis to Validate the Motor Activity Log and the Lower Functioning Motor Activity Log in Patients With Stroke. Physical Therapy, 97(10), 1030-1040. doi:10.1093/ptj/pzx071
Colomer, C., Baldovi, A., Torrome, S., Navarro, M. D., Moliner, B., Ferri, J., & Noe, E. (2013). Efficacy of Armeo(R) Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurologia, 28(5), 261-267. doi:10.1016/j.nrl.2012.04.017
Coupar, F., Pollock, A., van Wijck, F., Morris, J., & Langhorne, P. (2010). Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst Rev(4), CD006432. doi:10.1002/14651858.CD006432.pub2
Crum, R. M., Anthony, J. C., Bassett, S. S., & Folstein, M. F. (1993). Population-based norms for the Mini-Mental State Examination by age and educational level. JAMA, 269(18), 2386-2391.
Etoom, M., Hawamdeh, M., Hawamdeh, Z., Alwardat, M., Giordani, L., Bacciu, S., . . . Foti, C. (2016). Constraint-induced movement therapy as a rehabilitation intervention for upper extremity in stroke patients: systematic review and meta-analysis. International Journal of Rehabilitation Research, 39(3), 197-210. doi:10.1097/MRR.0000000000000169
Fan, Y. T., Lin, K. C., Liu, H. L., Wu, C. Y., Wai, Y. Y., & Lee, T. H. (2016). Neural correlates of motor recovery after robot-assisted stroke rehabilitation: a case series study. Neurocase, 1-10. doi:10.1080/13554794.2016.1215469
Flansbjer, U. B., Miller, M., Downham, D., & Lexell, J. (2008). Progressive resistance training after stroke: effects on muscle strength, muscle tone, gait performance and perceived participation. Journal of Rehabilitation Medicine, 40(1), 42-48. doi:10.2340/16501977-0129
Foundation, N. S. (2010). Clinical Guidelines for Stroke Management 2010: National Stroke Foundation.
French, B., Leathley, M., Sutton, C., McAdam, J., Thomas, L., Forster, A., . . . Watkins, C. (2008). A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness. Health Technology Assessment, 12(30), iii, ix-x, 1-117.
Fritz, S. L., Butts, R. J., & Wolf, S. L. (2012). Constraint-induced movement therapy: from history to plasticity. Expert Review of Neurotherapeutics, 12(2), 191-198. doi:10.1586/ern.11.201
Fugl-Meyer, A. R., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 13-31.
Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Borden, W. B., . . . Stroke Statistics, S. (2013). Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation, 127(1), e6-e245. doi:10.1161/CIR.0b013e31828124ad
Hammer, A., & Lindmark, B. (2009). Is forced use of the paretic upper limb beneficial? A randomized pilot study during subacute post-stroke recovery. Clinical Rehabilitation, 23(5), 424-433. doi:10.1177/0269215508101734
Hammer, A. M., & Lindmark, B. (2010). Responsiveness and validity of the Motor Activity Log in patients during the subacute phase after stroke. Disability and Rehabilitation, 32(14), 1184-1193. doi:10.3109/09638280903437253
Harris-Love, M. L., Morton, S. M., Perez, M. A., & Cohen, L. G. (2011). Mechanisms of short-term training-induced reaching improvement in severely hemiparetic stroke patients: a TMS study. Neurorehabilitation and Neural Repair, 25(5), 398-411. doi:10.1177/1545968310395600
Herman, S., Kiely, D. K., Leveille, S., O'Neill, E., Cyberey, S., & Bean, J. F. (2005). Upper and lower limb muscle power relationships in mobility-limited older adults. Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 60(4), 476-480.
Hesse, S., Herrmann, C., Bardeleben, A., Holzgraefe, M., Werner, C., Wingendorf, I., & Kirker, S. G. (2013). A new orthosis for subluxed, flaccid shoulder after stroke facilitates gait symmetry: a preliminary study. Journal of Rehabilitation Medicine, 45(7), 623-629. doi:10.2340/16501977-1172
Hesse, S., Hess, A., Werner, C. C., Kabbert, N., & Buschfort, R. (2014). Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: a randomized controlled trial. Clinical Rehabilitation, 28(7), 637-647. doi:10.1177/0269215513516967
Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., & Werner, C. (2003). Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Archives of Physical Medicine and Rehabilitation, 84(6), 915-920.
Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., & Lingnau, M. L. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke, 36(9), 1960-1966. doi:10.1161/01.STR.0000177865.37334.ce
Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J. J., Dipietro, L., Fasoli, S. E., . . . Volpe, B. T. (2006). Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. Journal of Rehabilitation Research and Development, 43(5), 605-618.
Hoonhorst, M. H., Nijland, R. H., van den Berg, J. S., Emmelot, C. H., Kollen, B. J., & Kwakkel, G. (2015). How do Fugl-Meyer arm motor scores relate to dexterity according to the Action Research Arm Test at 6 months poststroke? Archives of Physical Medicine and Rehabilitation, 96(10), 1845-1849. doi:10.1016/j.apmr.2015.06.009
Hsieh, Y. W., Liing, R. J., Lin, K. C., Wu, C. Y., Liou, T. H., Lin, J. C., & Hung, J. W. (2016). Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke. Journal of Neuroengineering and Rehabilitation, 13, 31. doi:10.1186/s12984-016-0138-5
Hsieh, Y. W., Lin, K. C., Horng, Y. S., Wu, C. Y., Wu, T. C., & Ku, F. L. (2014). Sequential combination of robot-assisted therapy and constraint-induced therapy in stroke rehabilitation: a randomized controlled trial. Journal of Neurology, 261(5), 1037-1045. doi:10.1007/s00415-014-7345-4
Hsieh, Y. W., Wu, C. Y., Liao, W. W., Lin, K. C., Wu, K. Y., & Lee, C. Y. (2011). Effects of treatment intensity in upper limb robot-assisted therapy for chronic stroke: a pilot randomized controlled trial. Neurorehabilitation and Neural Repair, 25(6), 503-511. doi:10.1177/1545968310394871
Hsieh, Y. W., Wu, C. Y., Lin, K. C., Chang, Y. F., Chen, C. L., & Liu, J. S. (2009). Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke, 40(4), 1386-1391. doi:10.1161/STROKEAHA.108.530584
Hsieh, Y. W., Wu, C. Y., Lin, K. C., Yao, G., Wu, K. Y., & Chang, Y. J. (2012). Dose-response relationship of robot-assisted stroke motor rehabilitation: the impact of initial motor status. Stroke, 43(10), 2729-2734. doi:10.1161/STROKEAHA.112.658807
Hsieh, Y. W., Wu, C. Y., Wang, W. E., Lin, K. C., Chang, K. C., Chen, C. C., & Liu, C. T. (2016). Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: A pilot randomized controlled trial. Clinical Rehabilitation. doi:10.1177/0269215516633275
Huang, H. J., & Ferris, D. P. (2009). Upper and lower limb muscle activation is bidirectionally and ipsilaterally coupled. Medicine and Science in Sports and Exercise, 41(9), 1778-1789. doi:10.1249/MSS.0b013e31819f75a7
Huang, P. C., Hsieh, Y. W., Wang, C. M., Wu, C. Y., Huang, S. C., & Lin, K. C. (2014). Predictors of motor, daily function, and quality-of-life improvements after upper-extremity robot-assisted rehabilitation in stroke. American Journal of Occupational Therapy, 68(3), 325-333. doi:10.5014/ajot.2014.010546
Huang, V. S., & Krakauer, J. W. (2009). Robotic neurorehabilitation: a computational motor learning perspective. Journal of Neuroengineering and Rehabilitation, 6, 5. doi:10.1186/1743-0003-6-5
Hung, C. S., Hsieh, Y. W., Wu, C. Y., Lin, K. C., Lin, J. C., Yeh, L. M., & Yin, H. P. (2016). Comparative Assessment of Two Robot-Assisted Therapies in Chronic Stroke: A Pilot Study.
Hung, C. S., Hsieh, Y. W., Wu, C. Y., Lin, Y. T., Lin, K. C., & Chen, C. L. (2016a). The effects of combination of robot-assisted therapy with task-specific or impairment-oriented training on motor function and quality of life in chronic stroke. PM & R : the journal of injury, function, and rehabilitation, 8(8), 721-729. doi:10.1016/j.pmrj.2016.01.008
Hung, C. S., Hsieh, Y. W., Wu, C. Y., Lin, Y. T., Lin, K. C., & Chen, C. L. (2016b). The Effects of Combination of Robot-Assisted Therapy With Task-Specific or Impairment-Oriented Training on Motor Function and Quality of Life in Chronic Stroke. Pm r. doi:10.1016/j.pmrj.2016.01.008
Jigjid, E., Kawashima, N., Ogata, H., Nakazawa, K., Akai, M., Eto, F., & Haga, N. (2008). Effects of passive leg movement on the oxygenation level of lower limb muscle in chronic stroke patients. Neurorehabilitation and Neural Repair, 22(1), 40-49. doi:10.1177/1545968307302927
Kaupp, C., Pearcey, G. E. P., Klarner, T., Sun, Y., Cullen, H., Barss, T. S., & Zehr, E. P. (2018). Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation. Journal of Neurophysiology, 119(3), 1095-1112. doi:10.1152/jn.00570.2017
Kilbreath, S. L., & Heard, R. C. (2005). Frequency of hand use in healthy older persons. Australian Journal of Physiotherapy, 51(2), 119-122. doi:http://dx.doi.org/10.1016/S0004-9514(05)70040-4
Kim, H., Her, J., Ko, J., Park, D.-s., Woo, J.-H., You, Y., & Choi, Y. (2012). Reliability, concurrent validity, and responsiveness of the Fugl-Meyer Assessment (FMA) for hemiplegic patients. Journal of Physical Therapy Science, 24(9), 893-899. doi:10.1589/jpts.24.893
Kiresuk, T. J., & Sherman, R. E. (1968). Goal attainment scaling: a general method for evaluating comprehensive community mental health programs. Community Mental Health Journal, 4(6), 443-453. doi:10.1007/BF01530764
Kitago, T., & Krakauer, J. W. (2013). Motor learning principles for neurorehabilitation. Handbook of Clinical Neurology, 110, 93-103. doi:10.1016/B978-0-444-52901-5.00008-3
Kitago, T., Liang, J., Huang, V. S., Hayes, S., Simon, P., Tenteromano, L., . . . Krakauer, J. W. (2013). Improvement after constraint-induced movement therapy: recovery of normal motor control or task-specific compensation? Neurorehabilitation and Neural Repair, 27(2), 99-109. doi:10.1177/1545968312452631
Klamroth-Marganska, V., Blanco, J., Campen, K., Curt, A., Dietz, V., Ettlin, T., . . . Riener, R. (2014). Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurology, 13(2), 159-166. doi:10.1016/S1474-4422(13)70305-3
Kleim, J. A., & Jones, T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. Journal of Speech, Language, and Hearing Research, 51(1), S225-239. doi:10.1044/1092-4388(2008/018)
Krawczyk, M., Sidaway, M., Radwanska, A., Zaborska, J., Ujma, R., & Czlonkowska, A. (2012). Effects of sling and voluntary constraint during constraint-induced movement therapy for the arm after stroke: a randomized, prospective, single-centre, blinded observer rated study. Clinical Rehabilitation, 26(11), 990-998. doi:10.1177/0269215512442661
Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation and Neural Repair, 22(2), 111-121. doi:10.1177/1545968307305457
Kwakkel, G., van Peppen, R., Wagenaar, R. C., Wood Dauphinee, S., Richards, C., Ashburn, A., . . . Langhorne, P. (2004). Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke, 35(11), 2529-2539. doi:10.1161/01.STR.0000143153.76460.7d
Kwakkel, G., Veerbeek, J. M., van Wegen, E. E., & Wolf, S. L. (2015). Constraint-induced movement therapy after stroke. Lancet Neurology, 14(2), 224-234. doi:10.1016/S1474-4422(14)70160-7
Lee, Y. Y., Lin, K. C., Cheng, H. J., Wu, C. Y., Hsieh, Y. W., & Chen, C. K. (2015). Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: a double-blinded randomized controlled trial. J Neuroeng Rehabil, 12, 96. doi:10.1186/s12984-015-0088-3
Lee, Y. Y., Lin, K. C., Wu, C. Y., Liao, C. H., Lin, J. C., & Chen, C. L. (2015). Combining Afferent Stimulation and Mirror Therapy for Improving Muscular, Sensorimotor, and Daily Functions After Chronic Stroke: A Randomized, Placebo-Controlled Study. American Journal of Physical Medicine and Rehabilitation, 94(10 Suppl 1), 859-868. doi:10.1097/PHM.0000000000000271
Liao, W. W., Wu, C. Y., Hsieh, Y. W., Lin, K. C., & Chang, W. Y. (2012). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clinical Rehabilitation, 26(2), 111-120. doi:10.1177/0269215511416383
Liepert, J., Bauder, H., Wolfgang, H. R., Miltner, W. H., Taub, E., & Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31(6), 1210-1216.
Liepert, J., Miltner, W. H., Bauder, H., Sommer, M., Dettmers, C., Taub, E., & Weiller, C. (1998). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neuroscience Letters, 250(1), 5-8.
Liepert, J., Uhde, I., Graf, S., Leidner, O., & Weiller, C. (2001). Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. Journal of Neurology, 248(4), 315-321.
Lin, K. C., Chang, Y. F., Wu, C. Y., & Chen, Y. A. (2009). Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors. Neurorehabilitation and Neural Repair, 23(5), 441-448. doi:10.1177/1545968308328719
Lin, K. C., Chen, Y. A., Chen, C. L., Wu, C. Y., & Chang, Y. F. (2010). The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study. Neurorehabilitation and Neural Repair, 24(1), 42-51. doi:10.1177/1545968309345268
Lin, K. C., Fu, T., Wu, C. Y., Hsieh, Y. W., Chen, C. L., & Lee, P. C. (2010). Psychometric comparisons of the Stroke Impact Scale 3.0 and Stroke-Specific Quality of Life Scale. Quality of Life Research, 19(3), 435-443. doi:10.1007/s11136-010-9597-5
Lin, K. C., Fu, T., Wu, C. Y., Wang, Y. H., Liu, J. S., Hsieh, C. J., & Lin, S. F. (2010). Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabilitation and Neural Repair, 24(5), 486-492. doi:10.1177/1545968309356295
Lin, K. C., Hsieh, Y. W., Wu, C. Y., Chen, C. L., Jang, Y., & Liu, J. S. (2009). Minimal detectable change and clinically important difference of the Wolf Motor Function Test in stroke patients. Neurorehabilitation and Neural Repair, 23(5), 429-434. doi:10.1177/1545968308331144
Lin, K. C., Huang, Y. H., Hsieh, Y. W., & Wu, C. Y. (2009). Potential predictors of motor and functional outcomes after distributed constraint-induced therapy for patients with stroke. Neurorehabilitation and Neural Repair, 23(4), 336-342. doi:10.1177/1545968308321773
Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., . . . Peduzzi, P. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772-1783. doi:10.1056/NEJMoa0911341
Luft, A. R., McCombe-Waller, S., Whitall, J., Forrester, L. W., Macko, R., Sorkin, J. D., . . . Hanley, D. F. (2004). Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA, 292(15), 1853-1861. doi:10.1001/jama.292.15.1853
MacDermid, J., Solomon, G., Fedorczyk, J., & Valdes, K. (2015). ASHT Clinical Assessment Recommendations 3rd Edition: Impairment-Based Conditions: American Society of Hand Therapists.
Marumoto, K., Koyama, T., Hosomi, M., Takebayashi, T., Hanada, K., Ikeda, S., . . . Domen, K. (2013). Diffusion tensor imaging predicts the outcome of constraint-induced movement therapy in chronic infarction patients with hemiplegia: A pilot study. Restorative Neurology and Neuroscience, 31(4), 387-396. doi:10.3233/RNN-120285
Mathiowetz, V., Weber, K., Volland, G., & Kashman, N. (1984). Reliability and validity of grip and pinch strength evaluations. Journal of Hand Surgery, 9(2), 222-226.
McCabe, J., Monkiewicz, M., Holcomb, J., Pundik, S., & Daly, J. J. (2015). Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 96(6), 981-990. doi:10.1016/j.apmr.2014.10.022
McCombe Waller, S., Forrester, L., Villagra, F., & Whitall, J. (2008). Intracortical inhibition and facilitation with unilateral dominant, unilateral nondominant and bilateral movement tasks in left- and right-handed adults. Journal of the Neurological Sciences, 269(1-2), 96-104. doi:10.1016/j.jns.2007.12.033
McCombe Waller, S., Liu, W., & Whitall, J. (2008). Temporal and spatial control following bilateral versus unilateral training. Hum Mov Sci, 27(5), 749-758. doi:10.1016/j.humov.2008.03.006
McCombe Waller, S., & Whitall, J. (2008). Bilateral arm training: why and who benefits? NeuroRehabilitation, 23(1), 29-41.
McCombe Waller, S., Whitall, J., Jenkins, T., Magder, L. S., Hanley, D. F., Goldberg, A., & Luft, A. R. (2014). Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke. BMC Neurology, 14, 236. doi:10.1186/s12883-014-0236-6
McNulty, P. A., Thompson-Butel, A. G., Faux, S. G., Lin, G., Katrak, P. H., Harris, L. R., & Shiner, C. T. (2015). The efficacy of Wii-based Movement Therapy for upper limb rehabilitation in the chronic poststroke period: a randomized controlled trial. International Journal of Stroke, 10(8), 1253-1260. doi:10.1111/ijs.12594
Medical Research Council of the United Kingdom. (1976). Memorandum No. 45 - Aids to the Examination of the Peripheral Nervous System: H.M. Stationery Office.
Mehrholz, J., Pohl, M., Platz, T., Kugler, J., & Elsner, B. (2015). Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev, 11, CD006876. doi:10.1002/14651858.CD006876.pub4
Meyns, P., Bruijn, S. M., & Duysens, J. (2013). The how and why of arm swing during human walking. Gait and Posture, 38(4), 555-562. doi:10.1016/j.gaitpost.2013.02.006
Morris, D. M., Uswatte, G., Crago, J. E., Cook, E. W., 3rd, & Taub, E. (2001). The reliability of the wolf motor function test for assessing upper extremity function after stroke. Archives of Physical Medicine and Rehabilitation, 82(6), 750-755. doi:10.1053/apmr.2001.23183
Morris, J. H., van Wijck, F., Joice, S., Ogston, S. A., Cole, I., & MacWalter, R. S. (2008). A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 89(7), 1237-1245. doi:10.1016/j.apmr.2007.11.039
Mudie, M. H., & Matyas, T. A. (1996). Upper Extremity Retraining Following Stroke: Effects of Bilateral Practice. Neurorehabilitation and Neural Repair, 10(3), 167-184. doi:10.1177/154596839601000304
Murase, N., Duque, J., Mazzocchio, R., & Cohen, L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Annals of Neurology, 55(3), 400-409. doi:10.1002/ana.10848
Norouzi-Gheidari, N., Archambault, P. S., & Fung, J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development, 49(4), 479-496. doi:10.1682/JRRD.2010.10.0210
Nouri, F., & Lincoln, N. (1987). An extended activities of daily living scale for stroke patients. Clinical Rehabilitation, 1(4), 301-305. doi:10.1177/026921558700100409
Nuyens, G. E., De Weerdt, W. J., Spaepen, A. J., Jr., Kiekens, C., & Feys, H. M. (2002). Reduction of spastic hypertonia during repeated passive knee movements in stroke patients. Archives of Physical Medicine and Rehabilitation, 83(7), 930-935.
Page, S. J., Fulk, G. D., & Boyne, P. (2012). Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Physical Therapy, 92(6), 791-798. doi:10.2522/ptj.20110009
Park, J. H. (2015). The effects of modified constraint-induced therapy combined with mental practice on patients with chronic stroke. Journal of Physical Therapy Science, 27(5), 1585-1588. doi:10.1589/jpts.27.1585
Pellegrino, G., Tomasevic, L., Tombini, M., Assenza, G., Bravi, M., Sterzi, S., . . . Tecchio, F. (2012). Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. Restorative Neurology and Neuroscience, 30(6), 497-510. doi:10.3233/rnn-2012-120227
Pignolo, L. (2009). Robotics in neuro-rehabilitation. Journal of Rehabilitation Medicine, 41(12), 955-960. doi:10.2340/16501977-0434
Platz, T. (2004). Impairment-oriented training (IOT)--scientific concept and evidence-based treatment strategies. Restorative Neurology and Neuroscience, 22(3-5), 301-315.
Platz, T., Winter, T., Muller, N., Pinkowski, C., Eickhof, C., & Mauritz, K. H. (2001). Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Archives of Physical Medicine and Rehabilitation, 82(7), 961-968.
Prange, G. B., Jannink, M. J., Groothuis-Oudshoorn, C. G., Hermens, H. J., & Ijzerman, M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabilitation Research and Development, 43(2), 171-184.
Radomski, M. V., & Latham, C. A. T. (2013). Occupational Therapy for Physical Dysfunction: Wolters Kluwer Health/Lippincott Williams & Wilkins.
Reinkensmeyer, D. J., Maier, M. A., Guigon, E., Chan, V., Akoner, O., Wolbrecht, E. T., . . . Bobrow, J. E. (2009). Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? Experimental evidence and a computational model. Conference Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, 2439-2441. doi:10.1109/IEMBS.2009.5335353
Riener, R., Nef, T., & Colombo, G. (2005). Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing, 43(1), 2-10.
Rocha, S., Silva, E., Foerster, A., Wiesiolek, C., Chagas, A. P., Machado, G., . . . Monte-Silva, K. (2016). The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial. Disability and Rehabilitation, 38(7), 653-660. doi:10.3109/09638288.2015.1055382
Sawaki, L., Butler, A. J., Leng, X., Wassenaar, P. A., Mohammad, Y. M., Blanton, S., . . . Wittenberg, G. F. (2008). Constraint-induced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabilitation and Neural Repair, 22(5), 505-513. doi:10.1177/1545968308317531
Sawaki, L., Butler, A. J., Leng, X., Wassenaar, P. A., Mohammad, Y. M., Blanton, S., . . . Wittenberg, G. F. (2014). Differential patterns of cortical reorganization following constraint-induced movement therapy during early and late period after stroke: A preliminary study. NeuroRehabilitation, 35(3), 415-426. doi:10.3233/NRE-141132
Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89-108. doi:10.1146/annurev-neuro-060909-153135
Sharma, N., & Baron, J. C. (2013). Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis. Frontiers in Human Neuroscience, 7, 564. doi:10.3389/fnhum.2013.00564
Shi, Y. X., Tian, J. H., Yang, K. H., & Zhao, Y. (2011). Modified constraint-induced movement therapy versus traditional rehabilitation in patients with upper-extremity dysfunction after stroke: a systematic review and meta-analysis. Archives of Physical Medicine and Rehabilitation, 92(6), 972-982. doi:10.1016/j.apmr.2010.12.036
Shiner, C. T., Byblow, W. D., & McNulty, P. A. (2014). Bilateral priming before wii-based movement therapy enhances upper limb rehabilitation and its retention after stroke: a case-controlled study. Neurorehabilitation and Neural Repair, 28(9), 828-838. doi:10.1177/1545968314523679
Simkins, M., Kim, H., Abrams, G., Byl, N., & Rosen, J. (2013). Robotic unilateral and bilateral upper-limb movement training for stroke survivors afflicted by chronic hemiparesis. IEEE Int Conf Rehabil Robot, 2013, 1-6. doi:10.1109/ICORR.2013.6650506
Sivan, M., Gallagher, J., Makower, S., Keeling, D., Bhakta, B., O'Connor, R. J., & Levesley, M. (2014). Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting. Journal of Neuroengineering and Rehabilitation, 11, 163. doi:10.1186/1743-0003-11-163
Sleimen-Malkoun, R., Temprado, J. J., Thefenne, L., & Berton, E. (2011). Bimanual training in stroke: How do coupling and symmetry-breaking matter? BMC Neurology, 11, 11. doi:10.1186/1471-2377-11-11
Song, G. B. (2015). The effects of task-oriented versus repetitive bilateral arm training on upper limb function and activities of daily living in stroke patients. Journal of Physical Therapy Science, 27(5), 1353-1355. doi:10.1589/jpts.27.1353
Souza, W. C., Conforto, A. B., Orsini, M., Stern, A., & Andre, C. (2015). Similar Effects of Two Modified Constraint-Induced Therapy Protocols on Motor Impairment, Motor Function and Quality of Life in Patients with Chronic Stroke. Neurology International, 7(1), 5430. doi:10.4081/ni.2015.5430
Stewart, J. C., Dewanjee, P., Tran, G., Quinlan, E. B., Dodakian, L., McKenzie, A., . . . Cramer, S. C. (2017). Role o
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71248-
dc.description.abstract背景及研究目的
  大部分的中風患者留有長期上肢動作功能損傷,急性期過後的動作復原主要仰賴神經復健介入,機械輔助療法、侷限誘發療法及雙側上肢訓練等都被視為具有潛力的神經復健手法。不同的介入手法各有其特色、療效及限制,合併不同手法成為複合療法,也許能提供優於或異於單一療法的治療成效,並為神經復健帶來更多元化及個別化的介入選擇。此研究具以下三項研究目的:第一,檢驗複合療法相較於機械輔助療法的療效差異;第二,比較單、雙側複合療法於動作功能、日常活動、生活品質等不同面向之療效;第三,檢驗治療後三個月的持續療效及可能的延遲效應。
方法
  此研究為隨機分派試驗,共募集45位慢性中風患者,並隨機分派至單側複合治療組、雙側複合治療組或機器輔助治療組中之一組,接受為期6週的療程、治療前、後評量及療程結束後3個月的追蹤測驗。主要成效評量工具包含傅格梅爾動作量表(Fugl-Meyer Assessment, FMA)及中風影響量表(Stroke Impact Scale Version 3.0, SIS),次級成效評量工具包含醫學研究會議之肌力量表、Jamar握力測定器、 Jamar指捏力測定器、沃夫動作功能測驗(Wolf Motor Function Test, WMFT)、低功能動作活動紀錄表(Lower Functioning Motor Activity Log, LF-MAL)、諾丁漢延伸性日常生活量表(Nottingham Extended Activities of Daily Living scale, NEADL)、柯氏上臂與手部活動評量表(Chedoke Arm and Hand Activity Inventory, CAHAI)測量患者執行功能性活動的能力,及目標達成量表(Goal attainment scaling, GAS)。治療前後使用視覺類比量表評估疼痛及疲勞作為不良反應監測。復原率及達最小臨床重要差異(minimal clinically important difference, MCID)之比例用以檢視3組的復原模式。次群組比較中,則依治療前動作功能將受試者分為中度及重度動作損傷以檢視動作功能是否影響療效。
結果
  在主要成效評量中,FMA總分及遠端分數具有顯著的組別與時間交互作用(F3.2, 66.4 = 3.39, p = 0.02; F4, 82 = 2.93, p = 0.03),事後檢定發現,雙側複合治療組在治療後評量的FMA總分及遠端分數表現顯著優於單側複合治療組(p = 0.03及0.04);雙側複合治療組在治療後三個月追蹤的FMA總分顯著優於單側複合治療組(p = 0.01),治療後三個月追蹤的FMA遠端分數顯著優於單側複合治療組及機器輔助治療組(p = 0.047 及 0.03)。SIS中,3組間沒有顯著的組別與時間交互作用及組別間效應,但各項目均有顯著的時間效應,顯示3組在治療後均有顯著進步。次級評量結果顯示,在肌力、握力、捏力、WMFT、LF-MAL及CAHAI中,3組在治療後均顯著進步,但沒有組間差異;在NEADL移行項目中,3組具顯著組間差異(F 2, 40 = 4.14, p = 0.02, partial η2 =0.175),事後檢定顯示機器輔助治療組顯著優於雙側複合治療組(p < 0.01);在GAS中,3組具有顯著組間差異(F 2, 40 = 16.19, p < .01, partial η2 =0.454),事後分析顯示雙側複合治療組優於單側複合治療組及機器輔助治療組(p = 0.05及p < 0.01),而單側複合治療組又優於機器輔助治療組(p < 0.01)。次群組比較中顯示,治療前的動作功能會影響FMA總分、FMA近端分數、SIS手功能項目、及WMFT的進步幅度。
結論
  研究結果顯示,中度到重度動作損傷的慢性中風患者經過六週的治療後,雙側複合療法在動作功能,尤其是遠端動作功能,療效優於單側複合療法;雙側及單側複合療法在功能性目標的效益優於機器輔助療法;而機器輔助療法在功能性移行上較有幫助。雙側複合療法在遠端動作功能的長期療效優於單側複合療法及機器輔助療法。三種療法在生活品質的進步均能維持至治療結束後三個月。動作功能的程度不同,可能會影響治療後,在上肢動作功能及日常活動的進步量。治療後患者的疲勞或疼痛感均無明顯增加,顯示複合療法為臨床可行且安全的介入手法。此研究幫助我們充實由機器輔助療法及任務導向組成的複合療法運用於慢性中風復健的成效,揭示功能性目標導向、個別化治療與高科技復健輔具結合的可能性,有助於未來複合療法的研究發展及科技輔具的實證應用。
zh_TW
dc.description.abstractBackground and Purposes
Most of stroke survivors are left with long-term deficits, especially the motor impairment in upper extremity that influences the participation in daily life. After the acute stage, the recovery of the motor function mainly depends on neurorehabilitation. Robot-assisted therapy (RT), constraint-induced therapy (CIT), and bilateral arm training (BAT) are three of promising strategies in neurorehabilitation. The characteristics, effects, and constraints are various among different strategies. Hybrid therapy that combines different strategies may provide treatment effects that better than or different from single intervention, and may further expand the diversity and individualized intervention strategy of stroke rehabilitation. The purposes of this study were threefold: first, to examine the effects of hybrid therapy relative to RT on clinical outcomes; second, to compare the treatment effects between unilateral hybrid and bilateral hybrid rehabilitation; and third, to examine the retention effects and possible delayed response of the interventions at 3-month follow-up.
Methods
This study was a randomized controlled trial. Forty-five participants with chronic stroke were randomized into the UHT, BHT, or the RT group for a 6-week intervention, before, immediately after and 3-month follow-up. Primary outcomes were Fugl-Meyer Assessment and Stroke Impact Scale Version 3.0 (SIS). Secondary outcomes included the Medical Research Council scale (MRC), Jamar dynamometer and pinch gauge, Wolf Motor Function Test (WMFT), Lower Functioning Motor Activity Log (LF-MAL), Nottingham Extended Activities of Daily Living (NEADL) scale, Chedoke Arm and Hand Activity Inventory (CAHAI), and the goal attainment scaling (GAS). The 2-way mixed-measures analysis of covariance (ANCOVA) and ANCOVA was used to investigate the effects among the 3 treatments. The recovery rate and the proportion of minimal clinically important difference (MCID) were used to examine the recovery pattern of the 3 groups. To investigate the impact of pretreatment motor ability on the treatment effects, in the subgroup analysis, we compared the treatment effects between participants with moderate motor impairment and severe motor impairment.
Results
On the primary outcomes, the significant group × time interactions were found on the FMA total score and FMA distal score (F3.2, 66.4 = 3.39, p = 0.02; F4, 82 = 2.93, p = 0.03). The BHT group performed significantly better than the UHT group on the posttest FMA total score, posttest FMA distal score and follow-up FMA distal score (p = 0.03, 0.04, and 0.047), and significantly better than the RT group on the follow-up FMA distal score (p = 0.03). No significant group × time interaction was found on any domain of SIS, but significant time effects were found on all domain of SIS, indicating 3 groups had significant improvement after the interventions. On the secondary outcomes, 3 groups improved significantly on MRC, grip power, pinch power, WMFT, LF-MAL, and CAHAI without between-group difference. On the mobility domain of NEADL, significant between-group difference was found (F 2, 40 = 4.14, p = 0.02, partial η2 =0.175), favoring the RT group than the BHT group (p < 0.01). On the GAS, there was significant between-group difference (F 2, 40 = 16.19, p < .01, partial η2 =0.454) favoring the BHT than the UHT and RT (p = 0.05 and p < 0.01), and favoring the UHT than the RT (p < 0.01). The subgroup analysis showed that the upper limb motor ability would have impact on FMA total score, FMA distal score, hand function domain of SIS, pinch power, WMFT, LF-MAL, and CAHAI.
Conclusions
The results of this study suggest that the BHT had better treatment effect on upper limb motor ability, especially on the distal part, than the UHT on patients of chronic stroke with severe to moderate motor impairment. The UHT and BHT showed better outcome on functional goal attainment than the RT. The RT showed benefit on independent ambulation. The BHT group showed better retention effect on distal motor ability than the UHT and RT group. The improvements on quality of life retained at least 3 months after the 3 interventions. The upper limb motor ability on the baseline would affect the treatment effect on upper limb motor ability in the BHT group. There was no significant increase on pain or fatigue after 3 treatments, indicating the feasibility and safety of hybrid therapy. Based on the results, the hybrid therapies were suggested to promote the attainment of individualized functional goal, and the BHT and RT were suggested to enhance the upper limb motor ability and independent ambulation respectively on stroke patients with severe to moderate motor impairment. The study enriched our understanding of the hybrid therapies that combined the RT and task-specific training in the stroke rehabilitation. The experiences showed the possibility of combining the high-tech assistive products with functional-oriented and individualized interventions. The promising results provide knowledge for future research on hybrid therapy and the evidence-based application of high-tech assistive products.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:00:51Z (GMT). No. of bitstreams: 1
ntu-107-F00429003-1.pdf: 4962038 bytes, checksum: a145ecfe799cdc28ee8b9510419ef26e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents國立臺灣大學博士學位論文口試委員審定書 I
誌謝 III
中文摘要 V
ABSTRACT IX
Table of contents XIII
List of Figures XVII
List of Tables XIX
CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Study Purposes and Hypotheses 5
CHAPTER 2. LITERATURE REVIEW 7
2.1 Efficacy Study of Unilateral Arm Training 7
2.2 Efficacy Study of Bilateral Arm Training 12
2.3 Comparison of Unilateral Arm Training and Bilateral Arm Training 16
2.4 Efficacy Study of Robot-Assisted Therapy 20
2.5 Efficacy Study of Hybrid Therapy 25
2.5.1 Hybrid Therapy in Neurorehabilitation of Stroke 25
2.5.2 Hybrid Therapy of Robot-Assisted Therapy and Task-Specific Therapy 28
CHAPTER 3. METHODS 33
3.1 Participants 33
3.2 Sample Size Estimation 34
3.3 Study Design and Procedures 35
3.4 Apparatus 36
3.5 Interventions 37
3.5.1 Unilateral hybrid therapy (UHT) 38
3.5.2 Bilateral hybrid therapy (BHT) 40
3.5.3 Robot-assisted therapy (RT) 40
3.6 Outcome Measures 41
3.6.1 Primary Outcome Measures 42
3.6.2 Secondary Outcome Measures 44
3.7 Data Analysis 50
CHAPTER 4. RESULTS 55
4.1 Study Participation and Baseline Characteristics of the Patients 55
4.2 Effects of the 3 Groups on Primary Outcomes 56
4.3 Effects of the 3 Groups on Secondary Outcomes 59
4.4 Possible Adverse Effects 62
4.5 Recovery Rates and Trend Lines 63
4.6 Proportions of Achieving Minimal Clinically Important Difference 66
4.7 Subgroups Analyses of Initial Motor Impairment 68
CHAPTER 5. DISCUSSION 71
5.1 Summary of the Study Results 71
5.2 Treatment Effects Between UHT and BHT 73
5.3 The Treatment Effects Between the Hybrid Therapies and RT 79
5.4 Comparison with Previous Studies of Combined Therapies 84
5.5 Retention Effect of Hybrid Therapies and RT 88
5.6 Baseline Impairment Level as a Moderating Factor 91
5.7 Implication of the Study 94
5.8 Limitation and Future Study 97
5.9 Conclusions 100
References 103
Figures 139
Tables 155
Appendices 169
Appendix 1. Abbreviation Table 169
Appendix 2. The Classification of Hybrid Therapy 170
Appendix 3. The Bi-Manu-Track 171
Appendix 4. Treatment Protocol of Robot-Assisted Therapy in Unilateral and Bilateral Hybrid Therapy Group 172
Appendix 5. Treatment Protocol of Robot-Assisted Therapy in Robot-Assisted Therapy Group 173
Appendix 6. Principles of Task-specific Training in Robot-Assisted Therapy Group 174
Appendix 7. Examples of Activities Used in Functional Activity Practice 175
dc.language.isoen
dc.subject複合療法zh_TW
dc.subject中風zh_TW
dc.subject侷限誘發療法zh_TW
dc.subject雙側上肢訓練zh_TW
dc.subject機械輔助治療zh_TW
dc.subjectbilateral arm trainingen
dc.subjectstrokeen
dc.subjecthybrid therapyen
dc.subjectconstraint-induced therapyen
dc.subjectrobot-assisted therapyen
dc.title單、雙肢複合療法改善慢性中風個案上肢功能的對比試驗zh_TW
dc.titleUnilateral vs. Bilateral Hybrid Approaches for Upper Limb Function in Chronic Stroke Rehabilitationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee姚開屏(Kai-ping Grace Yao),張雅如(Ya-Ju Chang),陳嘉玲(Chia-Ling Chen),李亞芸(Ya-Yun Lee)
dc.subject.keyword中風,複合療法,侷限誘發療法,雙側上肢訓練,機械輔助治療,zh_TW
dc.subject.keywordstroke,hybrid therapy,constraint-induced therapy,bilateral arm training,robot-assisted therapy,en
dc.relation.page175
dc.identifier.doi10.6342/NTU201801929
dc.rights.note有償授權
dc.date.accepted2018-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept職能治療研究所zh_TW
顯示於系所單位:職能治療學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved