請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71219完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卿建業(Jian-Ye Ching) | |
| dc.contributor.author | Hsin-Yi Peng | en |
| dc.contributor.author | 彭馨儀 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:59:17Z | - |
| dc.date.available | 2019-10-25 | |
| dc.date.copyright | 2018-08-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-26 | |
| dc.identifier.citation | 劉泉枝 (1999). “臺北黏土有效應力模式之研究” 台灣科技大學工學院營建工程系博士論文
Abdelhamid, M. S. and Krizek, R. J. (1976). “At Rest Lateral Earth Pressure of a Consolidating Clay.” Journal of the Geotechnical Engineering Division, 102(GT7): 721-738. Agarwal, K. B. (1967). 'The Influence of Size and Orientation of Sample on the Undrained Strength of London clay.' Doctor of Philosophy in the Faculty of Engineering, University of London. Akai, K. and Adachi, T. (1965). 'Study on the One-Dimensional Consolidation and the Shear Strength Characteristics of Fully Saturated Clay, in Terms of Effective Stress.' Proceedings, 6th International Conference on Soil Mechanics and Foundation Engineering: 146-150. Al Haj, K. M. A. and Standing, J. R. (2015). “Mechanical Properties of Two Expansive Clay Soils from Sudan.” Geotechnique 65(4): 258–273. Anantanasakul, P., Yamamuro, J. A. and Kaliakin, V. N. (2012). “Stress-Strain and Strength Characteristics of Silt-Clay Transition Soils.” Journal of Geotechnical and Geoenvironmental Engineering, 138(10):1257-1265 Andersen, K. H. and Stenhamar, P. (1982). 'Static Plate Loading Tests on Overconsolidated Clay.' Journal of Geotechnical Engineering, ASCE 108(GT7): 918-934. Balasubramanian, A. S. and Chaudry A. R. (1976). 'Stress Strain Behaviour of Soft Bangkok Clay' : 390-401. Banerjee, P. K. and Stiohp, A. R. (1978). “Associated and Non-associated Constitutive Relations for Undrained Behaviour of Isotropic Soft Clays.” Intl. Journal for Numerical and Analytical Methods in Geomechanics 2: 35-56. Bate. B., Zhao, Q. and Burnset, S. E. (2014). “Impact of Organic Coatings on Frictional Strength of Organically Modified Clay” Journal of Geotechnical and Geoenvironmental Engineering, 140(1): 228-236. Batenipour, H., Alfaro, M. and Kurz, D. and Graham J. (2014). “Deformations and Ground Temperatures at a Road Embankment in Northern Canada” Can. Geotech. J. 51: 260–271. Baracos, A., Graham, J. and Domaschuk, L. (1980). 'Yielding and Rupture in a Lacustrine Clay.' Canadian Geotechical Journal 17: 559-573. Bellotti, R., Formigoni, G., and Jamiolkowski, M. (1976). “Remarks on the Effect of Overconsolidation on the Coefficient of Earth Pressure at Rest.” Proceedings, Istanbul Conference on Soil Mechanics and Foundation Engineering, 1: 17-25. Berre, T. and Bjerrum, L. (1973). 'Shear Strength of Normally Consolidated Clays.' Proceedings, 8th International Conference on Soil Mechanics and Foundation Engineering: 39-49. Burland, J. B. (1969). “Deformation of Soft Clay beneath Loaded Areas.” The proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering: 55-63. Burland, J. B., Rampello, S., Georgiannou, V. N. and Calabresi, G. (1996). “A Laboratory Study of the Strength of Four Stiff Clays.” Géotechnique, 46(3): 491-514. Broms, B. B. and Ratnam, A. M. (1963). 'Shear Strength of an Anisotropically Consolidated Clay.' Journal of the Soil Mechanics and Foundations Division, ASCE 89(SM6): 1-26. Brooker, E. W. and Ireland, H. O. (1965). “Earth Pressures at Rest Related to Stress History.” Canadian Geotechnical Journal, 2(1): 1-15. Bjerrum, L. and Lo, K. Y. (1963). 'Effect of Aging on the Shear-Strength Properties of a Normally Consolidated Clay.' Geotechnique 13: 147-157. Bjerrum, L. and Landva, A. (1966). “Direct Simple-Shear Tests on a Norwegian Quick clay.” Géotechnique 16(1): 1-20. Bjerrum, L. and Andersen, K. H. (1972). “In-Situ Measurements of Lateral Pressures in Clay” Proceedings 5th International Conference on Soil Mechanics and Foundation Engineering, 1:11-20. Calhoun, D. E. and Triandafilidis, G. E. (1969). “Dynamic Oedometer Study of Lateral Yield Effects.” Proceedings, 7th International Conference on Soil Mechanics and Foundation Engineering, 1: 65-72. Callisto, L. and Rampello, S. (2004). “An Interpretation of Structural Degradation for three Natural Clays.” Canadian Geotechnical Journal, 41(3): 392-407. Ching, J. Y. and Phoon, K. K. (2014). “Transformations and Correlations among some Clay Parameters —the Global Database.” Can. Geotech. J. 51: 663–685. Ching, J. Y. and Phoon, K. K. (2014). “Correlations among some Clay Parameters —the Multivariate Distribution.” Can. Geotech. J. 51: 686–704. Clough, G. W. and Denby, G. M. (1980). 'Self-Boring Pressuremeter Study of San Francisco Bay Mud.' Journal of the Geotechnical Engineering Division 106: 45-63. Crawford, C. B. (1964). 'Some Characteristics of Winnipeg Clay.' Canadian Geotechnical Journal 1(4): 227-235. DaCruz, P. T. (1963). 'Shear Strength Characteristics of Some Residual Compacted Clays.' Proceedings, 2nd Panamerican Conference on Soil Mechanics and Foundation Engineering: 73-102. Delory, F. A. and Salvas, R. J. (1969). 'Some Observations on the Undrained Shearing Strength Used to Analyze a Failure.' Canadian Geotechnical Journal 6(1): 97-110. Delory, F. A. and Salvas, R. J. (1967). 'Aninvestigation of Discrepancies in Undrained Shear Strength Test Results in Clay.' Ontario Joint Highway Research Programme. Reports University of Toronto: 45-64. Donaghe, R. T. and Townsend, F. C. (1978). 'Effects of Anisotropic Versus Isotropic Consolidation in Consolidated-Undrained Triaxial Compression Tests of Cohesive Soils.' Geotechnical Testing Journal 1(4): 173-189. Diaz-Rodriguez, J. A., Leroueil, S. and Aleman, J. D. (1992). “Yielding of Mexico City Clay and Other Natural Clays.” J. Geotech. Geoenviron. Eng. Div., ASCE,118, No.7, 981-995. Diaz-Rodriguez, J.A., Martinez-Vasquez, J.J. and Santamarina, J.C. (2009). “Strain-Rate Effects in Mexico City Soil.” J. Geotech. Geoenviron. Eng., ASCE, 135(2): 300-305. Edil, T. B. and Dhowian, A. W. (1981). “At Rest Lateral Pressure of Peat Soils.” Journal of the Geotechnical Engineering Division, 107(2): 201-217. Elaziz, A. Y. A. and Naggar, M. H. E. (2014). ” Geotechnical Capacity of Hollow-bar Micro-piles in Cohesive Soils.” Can. Geotech. J. 51: 1123–1138. Futai, M.M., Almeida, M.S.S. and Lacerda, W.A. (2004). “Yield, Strength, and Critical State Behaviour of a Tropical Saturated Soil.” Geotech. Eng., ASCE, 130(11): 1169-1179. Gasparre, A. (2005). “Advanced laboratory characterisation of London clay.” Thesis submitted to University of London in partial fulfilment for the degree of Doctor of Philosophy and for the Diploma of Imperial College London. Gylland, A. S. Jostad, H. P., Nordal, S. and Emdal, A. (2013). “Micro-level Investigation of the in Situ Shear Vane Failure Geometry in Sensitive Clay.” Geotechnique 63(14): 1264–1270. Hattab, M., Hammad, T. and Flereau, J. -M. (2015). ”Internal Friction Angle Variation in a Kaolin/Montmorillonite Clay Mix and Microstructural Identification.” Géotechnique, 65(1): 1-11. Hanzawa, H. (1977). 'Field and Laboratory Behaviour of Khor Al-Zubair Clay, Iraq.' Soils and Foundations 17(4): 17-30. Hanzawa, H. (1979). “Undrained Strength Characteristics of an Alluvial Marine Clay in the Tokyo Bay.” Soil and Foundations, 19(4): 69-84 Henkel, D. J. Sowa, V. A. (1963). 'The Influence of Stress History on Stress Paths in Undrained Triaxial Tests on Clay.' Laboratory Shear Testing of Soils: 280-294. Hanzawa, H. (1977). 'Geotechnical Properties of Normally Consolidated Fao Clay, Iraq.' Soils and Foundations 17(5): 1-15. Hicher, P. Y. (2016). “Experimental Study of Viscoplastic Mechanisms in clay Under Complex Loading.”Géotechnique 66(8): 661–669. Hight, D. W., Bond, A. J. and Legge, J. D. (1992). “Characterization of the Bothkennar Clay an Overview.” Geotechnique, 42(2): 303-347. Hinchberger, S. D. and Qu, G. (2009). “Viscoplastic Constitutive Approach for Rate-Sensitive Structured Clays.” Can. Geotech. J. 46: 609–626. Hong, Z. -S., Bian, X., Cui, Y. -J. Gao, Y. –F. and Zeng, L. –L. (2013). ‘‘Effect of Initial Water Content on Undrained Shear Behaviour of Reconstituted Clays.’’ Geotechnique, 63(6): 441–450. Hossam, M. A. N., Dennes, T. B. and Lim, E. F. (2007). “Effect of Temperature on Shear Strength and Yielding Behavior of soft Bangkok Clay” Soils and Foundations, 47(3): 423-436. Huergo, P. (1975). “The Coefficient of K¬0 in Remoulded Loess and Loam.” Proceedings, 5th Panamerican Conference on Soil Mechanics and Foundation Engineering, 1: 281-290. Kamal R. H., Coop, M. R., Jardine, R. J. and Brosse, A. (2014). “The Post-Yield Behaviour of Four Eocene-to-Jurassic UK Stiff Clays.” Geotechnique 64(8): 620–634. Koutsoftas, D. C. (1978). 'Effect of Cyclic Loads on Undrained Strength of Two Marine Clays.' Journal of the Geotechnical Engineering Division, ASCE 104(GT5): 609-620. Koutsoftas, D. C. (1981). 'Undrained Shear Behavior of a Marine Clay.' Laboratory Shear Strength of Soil, ASTM STP740: 254-276. Kulhawy, F. H. and Mayne, P. W. (1990). 'Manual on Estimating Soil Properties for Foundation Design.' Research Project 1493-6. Cornell-University. Hollister Hall Ithaca, New York. Kulhawy, F. H., Jackson, C. S. and Mayne, P. W. (1989). “First-Order Estimation of Ko in Sands and Clays.” Foundations Engineering: Current Principles and Practices, ASCE, 1: 121-134. Lacasse, S., Jamiolkowski, M., Lancellotta, R. and Lunne, T. (1981). “In Situ Characteristics of Two Norwegian Clays.” Norwegian Geotechnical Institute: 507-511 Ladd, C. C. and Lambe, T. W. (1963). 'The Strength of Undisturbed Clay Determined from Undrained Tests: 342-371 Ladd, C. C. (1964). 'Stress-Strain Modulus of Clay in Undrained Shear.' Journal of the Soil Mechanics and Foundation Engineering, ASCE 90, No. SM5: 103-132. Ladd, C. C. (1964). “Stress-Strain Behaviour of Saturated Clay and Basic Strength Principles.” Rept. R64-17, Massachusetts Institute of Technology, Cambridge. Ladd, C. C. (1965). 'Stress-Strain Behaviour of Anisotropically Consolidated Clays during Undrained Shear.' Proceedings, 6th International Conference on Soil Mechanics and Foundation Engineering: 282-286. Ladd, C.C. and Edgers, L. (1972). “Consolidated-Undrained Direct-Simple Shear Tests on Saturated Clays”. Department of Civil Engineering, Massachusetts Institute of Technology. Res. Report R72-82, Ladd, C. C., Bovee, R. B., Edgers, L. and Rixner, J. J. (1971). 'Consolidated Undrained Plane Strain Shear Tests on Boston Blue Clay.' Massachusetts Institute of Technology Contract Report 3-101 to U.S. Army Waterways Experiment Station: 1-306. Ladd, R. S. (1966). “Use of Electrical Pressure Transducers to Measure Soil Pressure.” Dept. of Civil Engineering, MIT, Research Report RG5-48(180): 1-79. Lambe, T. W. (1964). 'Methods of Estimating Settlement.' Journal of the Soil Mechanics and Foundations Division 90(5): 43-58. Larsson, R. (1977). “Basic Behaviour of Scandinavian Soft Clays.” Swedish Geotechnical Institute, Report(4). Leathers, F. D. and Ladd, C. C. (1978). 'Behavior of an Embankment on New York Varved Clay.' Canadian Geotechnical Journal, 12(2): 250-268. Lefebvre, G. and LeBoeuf, D. (1987). “Rate Effects and Cyclic Loading of Sensitive Clays.” Journal of Geotechnical Engineering, 113(5): 476 Leon, J. L. and Alberro, J. (1977). 'Extension and Compression Tests on Mexico City Clay.' 193-196. Likitlersuang S., Surarak, C., Balasubramania, A., Oh, E., Syeung, R. K. and Wanatowski, D. (2013). “Duncan-Chang -Parameters for Hyperbolic Stress Strain Behaviour of Soft Bangkok Clay.” Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering: 381-384. Lollino, P., Santaloia, F., Amorosi, A. and Cotecchia, F. (2011). “Delayed Failure of Quarry Slopes in Stiff Clays: the Case of the Lucera Landslide.” Geotechnique 61(10): 861–874. Lowe, J. and Karafiath, L. (1960). 'Effect of Anisotropic Consolidation on the Undrained Shear Strength of Compacted Clays.' Proceedings, Research Conference on Shear Strength of Cohesive Soils: 837-858. Mahar, L. J. and O'Neill, M. W. (1983). “Geotechnical Characterization of Desiccated Clay.” Journal of the Geotechnical Engineering, 109(1): 56-71. Marques, M.E.S., Leroueil, S. and Almeida, M.S.S. (2004). “Viscous Behaviour of St-Roch-de-l' Achigan Clay, Quebec.” Canadian Geotechnical Journal, 41(1): 25-38. Mayne, P. W. (1980). 'Cam Clay Predictions of Undrained Strength.' Journal of the Geotechnical Engineering Division, ASCE 106(GT11): 1219-1242. Mayne, P.W. and Swanson, P.G. (1981). “The Critical State Pore Pressure Parameter from Consolidated-Undrained Shear Tests.” Laboratory Shear Strength of Soil (STP 740), ASTM, Philadelphia, 410-430. Mayne, P. W. and Kulhawy, F. H. (1982). “K0–OCR Relationships in Soil.” Journal of the Geotechnical Engineering Division, 108(6):851-872. Mayne, P. W. (1985). 'Stress Anisotropy Effects on Clay Strength.' Journal of Geotechnical Engineering, ASCE, 111(3): 356-366. Mayne, P. W. and Kulhawy, F. H. (1990). “Direct and Indirect Determinations of In Situ K0 in Clays.” Transportation Research Record 1278. Massarch, K. R., Holtz, R. D., Holm, B. G. and Fredriksson, A. (1975). “Measurements of Horizontal In-Situ Stress.” Proceedings, Insitu Measurememt of Soil Properties, ASCE, 1: 266-286. Massarch, K.R. and Broms, B. B. (1976). “Lateral Earth Pressure at Rest in Soft Clay.” Journal of the Geotechnical Engineering Division ASCE, 102(GT10): 1041-1047. Mitachi, T. and Kitago, S. (1976). “Change in Undrained Shear Strength Characteristics of Saturated Remolded Clay due to Swelling.” Japanese Society of Soil Mechanics and Foundation Engineering, 16(1): 45-58 Moh, Z. C., Nelson, J. and Brand, E. (1969). 'Strength and Deformation Behavior of Bangkok Clay.' Proceedings, 7th International Conference on Soil Mechanics and Foundation Engineering: 287-295. Nakase, A. and Kamei, T. (1983). 'Undrained Shear Strength Anisotropy of Normally Consolidated Cohesive Soils.' Soils and Foundations 23(1): 91-101. Nakase, A. and Kamei, T. (1986). “Influence of Strain Rate on Undrained Shear Characteristics of K0-Consolidated Cohesive Soils” Japanese Society of soil Mechanics and Foundation Engineering. 26(1): 85-95. Najjar, S. S., Sadek, S. and Maakarounet T. (2010). “Effect of Sand Columns on the Undrained Load Response of Soft Clays.” Journal of Geotechnical and Geoenvironmental Engineering, 136(9): 1263-1277. Ng, R. M. C. and Lo, K. Y. (1985). 'The Measurements of Soil Parameters Relevant to Tunnelling in Clays.' Canadian Geotechnical Journal 22(3): 375-391. Parry, R. H. G. and Amerasinghe, S. F. (1973). “Components of Deformation in Clays.” Proceedings, Symposium on Plasticity and Soil Mechanics: 108-126. Parry, R. H. G. and Nadarajah (1974). 'Observations on Laboratory Prepared Lightly Overcinsolidated Specimens of Kaolin.' Geotechnique 24(3): 345-350. Phoon, K. K. and Simpson, B. (2017). “Discussion of Statistical/ Reliability Methods for Eurocodes.” Report of the joint TC205/TC304 working group Ponzoni, E., Nocilla, A., Coop, M. R. and Colleselli, F. (2014). “Identification and Quantification of Transitional Modes of Behaviour in Sediments of Venice Lagoon.” Geotechnique, 64(9): 694–708. Poulos, H. G. (1978). “Normalized Deformation Parameters for Kaolin.” Geotechical Testing Journal, GTJODJ, 1(2): 102-106. Pillai, R. J., Robinson, R. G. and Boominathan, A. (2011). “Effect of Microfabric on Undrained Static and Cyclic Behavior of Kaolin Clay.” Journal of Geotechnical and Geoenvironmental Engineering, 137(4): 421-429. Pineda, J. A., Suwal, L. P., Kelly, R. B., Bates, L. and Sloan, S. W. (2016). “Characterisation of Ballina clay.” Géotechnique, 66(7): 556–577. Prevost, J. H. and Hoeg, K. (1977). 'Plasticity Model for Undrained Stress-Strain Behavior.' Proceedings, 9th International Conference on Soil Mechanics and Foundation Engineering. Prevost, J. H. (1979). 'Undrained Shear Tests on Clays.' Journal of the Geotechnical Engineering Division, ASCE 105(GT1): 49-64. Sanchez, J. M., Sagaseta, C. and Ballester, F. (1979). “Influence of Stress History on Undrained Behaviour of Soft Clays.” Design parameters in geotechnical engineering. BGS, 1. Saxena, S. K., Hedberg, J., and Ladd, C. C. (1978). “Geotechnical Properties of Hackensack Valley Varved Clays of New Jersey.” Geotechnical Testing Journal, 1(3): 148-161. Sherif, M. A. and Koch, D. E. (1970). “K0 as Related to Soil Precompression Ratio and Liquid Limit.” Highway research record, 323: 39-48. Skempton, A. W. and Bishop, A. W. (1954). “Building Materials, their Elasticity and Inelasticity” North-Holland Pub. Co.: Interscience Publishers, New York. Skempton, A. W. and Sowa, V. A. (1963). 'The Behaviour of Saturated Clays During Sampling and Testing.' Géotechnique 13(4): 269-290. Sketchley, C. J. and Bransby, P. L. (1973). “The Behavior of an Overconsolidated Clay in Plane Strain.” 377-384 Simon, R. M., Christian, J. T. and Ladd, C. C. (1974). “Analysis of Undrained Behavior of Loads on Clay.” ASCE Proceedings, Analysis and Design in Geotechnical Engineering, 1: 51-84. Simons, N. E. (1960). “The Effect of Overconsolidation on the Shear Strength Characteristics of an Undisturbed Oslo Clay.” Proceedings, Research Conference on Shear Strength of Cohesive Soil, ADCE: 747-763. Singh, H. (1971). “The Behavior of Normally Consolidated and Heavily Overconsolidated Clays at Low Effective Stress.” A Thesis Presented to the Faculty of the Graduate School of Cornell University for the Degree of Doctor of Philosophy. Sivakumar, V., Navaneethan, T., Hughes, D. and Gallagher, G. (2009). “An assessment of the Earth Pressure Coefficient in Overconsolidated Clays.” Geotechnique 59(10): 825–838. Tavenas, F.A. Blanchette, G. Leroueil, S. Roy, M. and La Rochelle, P. (1975). “Difficulties in the In Situ Determination of K0 in Soft Sensitive Clays.” ASCE, 1: 450-476 Windle, D. and Wroth, C. P. (1977). “The Use of a Self-Boring Pressuremeter to Determine the Undrained Properties of Clays.” Ground Engineering 10(6):37-42, 45. Wu, T. H., Douglas, A. G. and Goughnour, R. D. (1962). 'Friction and Cohesive of Saturated Clays.' J. Soil Mech. And Found. Engrg. Div., ASCE, 88(3): 1-32. Wu, T. H., Kokesh, C. M., Trenner, B. R. and Fox, P. J. (2014). “Use of Live Poles for Stabilization of a Shallow Slope Failure.” Journal of Geotechnical and Geoenvironmental Engineering.140(10): 1-13. Xu, L. and Coop, M. R. (2016). “Influence of Structure on the Behavior of a Saturated Clayey Loess” Can. Geotech. J. 53: 1026–1037. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71219 | - |
| dc.description.abstract | 大地工程中,普遍存在著不確定性,且為可靠度設計中不可缺少的要素之一,雖然目前業界仍然使用安全係數法,但因他無法準確地量化不確定性,進而導致過度保守之設計。故本研究之目的為:有效利用現地調查所得來之資訊去預測不排水楊氏模數E50及靜止有效土壓力係數K0的機率分佈情形,並且結合其它參數的資訊去降低其不確定性。
首先,藉由文獻回顧去蒐集前人對飽和黏土所做阿太堡試驗、不排水等向性(異向性)三軸拉(壓)試驗以及其他試驗而測得之土壤參數去建立龐大資料庫,再篩選出我們認為有能探討之相關性的參數,包含: (1)液性限度(liquid limit, LL);(2)塑性指數(plastic index, PI);(3)液性指數(liquid index, LI);(4)垂直有效應力(vertical effective stress, σv’/pa);(5)過去垂直最大有效應力(vertical effective maximum stress, σp’/pa);(6)靈敏度(sensitivity, St);(7)正規化之不排水剪力強度(normalize undrained shear strength, su);(8)靜止有效土壓力係數(the coefficient of earth pressure at rest, K0);(9)正規化之不排水楊氏模數(undrained modulus, Eu50/su(mob));(10)試驗量測求得孔隙水壓力常數(Bq);(11)試驗量測求得正規化修正後總錐尖阻抗((qT-σv)/σv’);(12)試驗量測求得正規化修正後有效錐尖阻抗((qT-u2)/σv’))。 先用Johnson分佈系統將參數轉至標準常態空間,再使用吉普斯取樣法搭配共軛條件計算得到這十二個參數之間的共變異數矩陣、期望值向量以及填補資料庫的空洞;可利用標準常態空間下的共變異數矩陣及貝氏分析(Bayesian analysis)的演算法,得到在不同參數條件下,更新後不排水楊氏模數和靜止有效土壓力係數的後驗機率分佈函數。當代入的已知資訊愈多,標準偏差越小,所能估出來參數就越準確,我們便能更清楚知道此兩種黏土參數分佈的範圍,於可靠度觀念下能更加準確地去設計大地結構物並且節省工程材料成本。 | zh_TW |
| dc.description.abstract | Comparing with safety factor method, reliability-based design method can quantify the uncertainty to design geotechnical structure in a more systematical and economical design. In this study, a multivariate probability distribution model for twelve parameters of clay is constructed based on the CLAY/12/8198 database. These twelve parameters are:(1)liquid limit, LL; (2)plastic index, PI; (3)liquid index, LI; (4)vertical effective stress, σv’/pa; (5)vertical effective maximum stress, σp’/pa; (6)sensitivity, St; (7)normalize undrained shear strength, su; (8)the coefficient of earth pressure at rest, K0; (9)undrained modulus, Eu50/su(mob); (10)Bq; (11)(qT-σv)/σv’; (12)(qT-u2)/σv’.
Using Johnson distribution system to transform those distributions to standard normal distribution, then applying Gibbs sampler method under condition of conjugation let us get those 12 covariance matrix, mean vector and non-vacancy databases. Afterwards, using the Bayesian analysis framework, the original distributions of the design clay parameters (E50, K0) would serve as prior distributions and can be updated into posterior distributions by using different multivariate site-specific information. From the results, the transformation uncertainty of predicted posterior distribution can be effectively reduced as the multivariate site-specific information increases. With smaller uncertainty, reliability-based design can be more economical. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:59:17Z (GMT). No. of bitstreams: 1 ntu-107-R05521105-1.pdf: 10160379 bytes, checksum: cb1e2fe03387152bb782b6ce9970164c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 前言 13 1.1 研究背景與動機 13 1.2 研究方法 14 1.3 研究流程 15 1.4 研究內容 16 第二章 文獻回顧 17 2.1 不排水楊氏模數(E50)介紹 17 2.1.1 楊氏模數(E) 17 2.1.2 不排水楊氏模數(E50) 18 2.1.3 典型不排水楊氏模數值 19 2.1.4 不排水楊氏模數與不排水剪力強度(su)的相關性 20 2.2 靜止側向土壓力係數(K0)介紹 23 2.2.1 現地土應力狀態 23 2.2.2 應力歷史重建(reconstruction of stress history) 24 2.2.3 與土壤指數性質的關聯性(effective horizontal stress in cohesive soils) 27 2.2.4 與現地試驗的關聯性(直接方法) 30 2.2.5 與現地試驗的關聯性(間接方法) 32 第三章 資料庫 35 3.1 前人資料庫介紹 35 3.1.1 Clay/10/7490 36 3.1.2 F-Clay/7/216 36 3.1.3 比較CLAY/10/7490及F-Clay/7/216 36 3.2 本研究資料庫 Clay/12/8198 36 3.3 蒐集資料點方法 37 3.4 本資料庫資料與前人回歸線之對比 38 第四章 多變數機率分佈模型建置與模擬 42 4.1 參數間彼此相關性 43 4.1.1 資料庫回顧 43 4.1.2 (Yi, Yj)間之相關係數 46 4.1.3 (Xi, Xj)間之相關係數 48 4.2 Johnson分佈系統 48 4.2.1 Johnson 分佈系統類型 50 4.3 吉普斯取樣法Gibbs sampler與貝氏分析Bayesian analysis 55 4.3.1 貝氏定理Bayesian theorem 55 4.3.2 吉普斯取樣法Gibbs sampler 57 4.4 其他簡化版模擬方法 59 4.4.1 簡化版方法一 59 4.4.2 簡化版方法二 59 4.5 模擬結果 59 第五章 使用貝氏定理預測現地設計參數 78 5.1 權重問題 78 5.2 貝式理論更新之後驗分布 79 5.2.1 預測步驟 79 5.2.2 貝氏理論公式推導 80 5.3 驗證E50現地預測結果 81 5.3.1 案例一(從大資料庫選取) 81 5.3.2 案例二(從大資料庫選取) 83 5.3.3 案例三(從大資料庫選取) 85 5.3.4 案例四(從大資料庫選取) 87 5.3.5 案例一到四綜合評比 88 5.3.6 案例五(隨深度,從大資料庫選取,無真值驗證) 89 5.3.7 案例六(隨深度,從大資料庫選取,無真值驗證) 90 5.4 驗證K0現地預測結果 91 5.4.1 案例一(從大資料庫選取) 92 5.4.2 案例二(從大資料庫特別選取有CPTU資料) 93 5.4.3 案例三(從大資料庫選取) 94 第六章 結論與未來建議 97 6.1 結論 97 6.2 未來建議 98 參考文獻 99 Appendix I資料庫含目標參數(E50,K0)之基本資訊 108 Appendix II口試問答紀錄 116 | |
| dc.language.iso | zh-TW | |
| dc.subject | 靜止有效土壓力係數 | zh_TW |
| dc.subject | 不排水楊氏模數 | zh_TW |
| dc.subject | 相關性 | zh_TW |
| dc.subject | 黏土參數 | zh_TW |
| dc.subject | Johnson 分佈系統 | zh_TW |
| dc.subject | 吉普斯取樣法 | zh_TW |
| dc.subject | 貝氏分析 | zh_TW |
| dc.subject | 多變數機率分佈模型 | zh_TW |
| dc.subject | Bayesian analysis | en |
| dc.subject | undrained modulus | en |
| dc.subject | the coefficient of earth pressure at rest | en |
| dc.subject | correlation | en |
| dc.subject | Johnson distribution system | en |
| dc.subject | Gibbs sampler | en |
| dc.subject | clay parameters | en |
| dc.subject | multivariate probability distribution | en |
| dc.title | 黏土參數聯合機率分佈的建置 | zh_TW |
| dc.title | Development for the multivariate distribution of clay parameters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王瑞斌,劉家男 | |
| dc.subject.keyword | 黏土參數,不排水楊氏模數,靜止有效土壓力係數,相關性,Johnson 分佈系統,吉普斯取樣法,貝氏分析,多變數機率分佈模型, | zh_TW |
| dc.subject.keyword | clay parameters,undrained modulus, the coefficient of earth pressure at rest,correlation,Johnson distribution system,Gibbs sampler,Bayesian analysis,multivariate probability distribution, | en |
| dc.relation.page | 118 | |
| dc.identifier.doi | 10.6342/NTU201801999 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 9.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
