Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71218
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪淑蕙
dc.contributor.authorWen-Pei Daien
dc.contributor.author戴汶珮zh_TW
dc.date.accessioned2021-06-17T04:59:13Z-
dc.date.available2018-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-26
dc.identifier.citationBarbour, A., Agnew, D. C. (2010). Coseismic Offsets on PBO Borehole Strainmeters: Real, or Spurious?, Abstract presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.
Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M. & Yang,Y. (2007). Processin seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, GJI Seismology, 169, 1239-1260.
Biq, C.C. (1965). The East Taiwan Rift, Petrol. Geol. Taiwan, 4, 93-106.
Breaguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., Nercessian, A. (2008a). Towards forecasting volcanic eruptions using seismic noise, Nat. Geosci., 1, 126-130, doi:10.1038/ngeo104
Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N.M., Nadeau, R.M., Larose, E. (2008b). Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations, Science, Vol. 321, 1478-1481
Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N.M., Briand, X., Emoto, K., Miyake, H. (2014). Mapping pressurized volcanic fluids from induced crustal seismic velocity drops, Science, 345, 80
Calvet, M. & Margerin, L. (2013). Lapse-Time Dependence of Coda Q: Anisotropic Multiple-Scattering Models and Application to the Pyrenees, Bulletin of the Seismological Society of America, Vol. 103, No. 3, 1993–2010.
Campillo, M. (2003). Long-range correlations in the diffuse seismic coda, Science, Vol. 299, 547-549, doi:10.1126/science.1078551
Canitano, A., Hsu, Y.J., Lee, H.M., Linde, A.T., Sacks, S. (2015). Near-field strain observations of the October 2013 Ruisui, Taiwan, earthquake: source parameters and limits of vert short-term strain detection, Earth, Planets and Space, 67:125, doi:10.1186/s40623-015-0284-1
Chang, Y.S. (2002). Preliminary Analysis of the Borehole Strainmeter Data in Eastern Taiwan, Department of Geoscienses College of Sciences National Taiwan University Master Thesis.
Chen, J.H., Froment, B., Liu, Q.Y., Campillo, M. (2010). Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake, Geophysical Research Letters, Volume37, Issue18
Chen, Y.N. (2009). On Short Period Ambient Noise of Northern Taiwan, Institute of Oceanography College of Sciences National Taiwan University Master Thesis.
Chen, Y.N., Gung, Y.C., You, S.H., Hung, S.H., Chiao, L.Y., Huang, T.Y., Chen, Y.L., Liang, W.T., Jen, S. (2011). Characteristics of short period secondary microseisms (SPSM) in Taiwan : The influence of shallow ocean strait on SPSM, Geophysical Research Letters, 38, Issue 4.
Dal Moro, G. and Zadro, M. (1998). Subsurface deformations induced by rainfall and atmosphere pressure: tilt/strain measurements in the NE-Italy seismic area, Earth Planet. Sci. Lett., 164, 193-203. doi:10.1016/S0012-821X(98)00203-9
Duputel, Z., Ferrazzini, V., Brenguier, F., Shapiro, N., Campillo, M., Nercessian, A. (2009). Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007, J. Volcanol. Geotherm. Res., 184, 164-173, doi:10.1016/j.jvolgeores.2008.11.024
Durand, S., Montagner, J.P., Roux, P., Brenguier, F., Nadeau, R.M., Ricard, Y. (2011). Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake, Geophysical research letters, Vol. 38, L13303, doiL10.1029/2011GL047875
Evertson, D. W. (1977). Borehole strainmeters for seismology, Technical Report
Froment, N., Campillo, M., Roux, P., Gouédard, P., Verdel, A., Weaver, R. L. (2010). Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations, Geophysics, 75(5), SA85-SA93, doi:10.1190/1.3483102
Hennino, R., Trégourès, N., Shapiro, N. M., Margerin, L., Campillo, M., Tiggelen, B. A. van, Weaver, R. L. (2001). Observation of Equipartition of Seismic Waves, Physical Review Letters, vol. 86, 3447-3450
Hsieh, M. C., Zhao, L., Ma, K. F. (2013). Preliminary Study of the Oct. 31, 2013, Ruisui Earthquake by Efficient Waveform Inversion, Academic seminar of 20131031 Ruisui Earthquake, Taipei, Taiwan
Hsu, Y.J., Chang, Y.S., Liu, C.C., Lee, H.M., Linde, A.T., Sacks, S.I., Kitagawa, G., Chen, Y.G. (2015). Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes, Journal of Geophysical Research: Solid Earth, 120, doi:10.1002/2014JB011807
Huang, H.H., Wu, Y.M., Song, X.D., Chang, C.H., Lee, S.J., Chang, T.M., Hsieh, H.H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny, Earth and Planetary Science Letters, 392, 177-191
Johnston, M. J. S., Linde, A. T., Agnew, D. C. (1994). Continuous borehole strain in the San-Andreas fault zone before, during, and after the 28 June 1992, Mw 7.3 Landers, California, Earthquake, Bull. Seismol. Soc. Am., 84, 799-805
Johnston M. J. S., Borcherdt, R. D., Linde, A., Gladwin, M. T. (2006). Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 Parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction, and tremor, Bull. Seismol. Soc. Am., 96, S56-S72, doi:10.1785/0120050822
Langbein, J., Gwyther, R. L., Hart, R. H. G., Gladwin, M. T. (1999). Slip-rate increase at Parkfield in 1993 detected by high-precision EDM and borehole tensor strainmeters, Geophys. Res. Lett., 26, 2529-2532, doi:10.1029/1999GL900557
Lee, J. C. (2008). A Brief Review Of Study On Active Tectonics Of The Longitudinal Valley At The Plate Suture In Eastern Taiwan, 2008 Symposium on Structural Geology of Taiwan Program and Abstracts, 12-15
Lee, J. C., Chu, H. T., Angelier, J., Hu, J. C., Chen, H. Y., Yu, S. B. (2006). Quantitative analysis of surface coseismic faulting and postseismic creep accompanying the 2003, Mw = 6.5, ChengKung earthquake in eastern Taiwan., Journal of Geophysical Research, Vol. 111, B02405, doi:10.1029/2005JB003612
Lee, S.J., Huang, H.H., Shyu, J.B.H., Yeh, T.Y., Lin, T.C. (2014). Numerical earthquake model of the 31 October 2013 Ruisui, Taiwan, earthquake: Source rupture process and seismic wave propagation, Journal of Asian Earth Sciences, Volume 96, 374-385
Linde A. T., Suyehiro, K., Miura, S. Sacks, I. S., Takagi, A. (1988). Episodic aseismic earthquake precursors, Nature, 334, 513-515, doi:10.1038/334513a0
Liu, C.C., Linde, A.T., Sacks, S.T. (2009). Slow earthquakes triggered by typhoons, Nature, Vol 459, 833-837, doi:10.1038/nature08042
Lobkis, O.I. and Weaver, R.L., (2001). On the emergence of the Green’s function in the correlations of a diffuse field, Acoustical Society of America, doi: 10.1121/1.1417528
Mainsant, G., Larose, E., Bronnimann, C., Jongmans, D., Michoud, C., Jaboyedoff, M. (2012). Ambient seismic noise monitoring of a clay landslide: Toward failure prediction, Journal of Geophysical Research, Vol. 117, doi:10.1029/2011JF002159
Nakahara, H. & Margerin, L. (2011). Testing Equipartition for S-Wave Coda Using Borehole Records of Local Earthquakes, Bulletin of the Seismological Society of America, Vol. 101, No. 5, 2243–2251.
Obermann, A., Planes, T., Larose, E., Campillo, M. (2013). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient noise, Journal of Geophysical Research: Solid Earth, Vol. 118, 6285-6294
Peng, Z. and Ben-Zion, Y., (2006). Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the north Anatolian fault and strong ground motion, Pure and Applied Geophysics, 163, 567-600, doi: 10.1007/s00024-005-0034-6
Poupinet, G., Ellsworth, W. L., Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras Fault, California, J. Geophys. Res., 89, 5719-5731
Rivet, D., Campillo, M., Radiguet, M., Zigone, D., Cruz-Atienza, V., Shapiro, N. M., Kostoglodov, V., Cotte, N., Cougoulat, G., Walpersdorf, A., Daub, E. (2014). Seismic velocity changes, strain rate and non-volcanic tremors during the 2009-2010 slow slip event in Guerrero, Mexico, Geophysical Journal International, 196, 1, 447-490
Roeloffs, E. (1999). Earth science – Radon and rock deformation, Nature, 399, 104-105, doi:10.1038/20072
Roeloffs, E., Quilty, E. (1997). Case 21: Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake, Pure Appl. Geophys., 149(1), 21-60, doi:10.1007/bf00945160
Roeloffs, E., Sneed, M., Galloway, D. L., Sorey, M. L., Farrar, C. D., Howle, J. F., Hughes, J. (2003). Water-level changes induced by local and distant earthquakes at Long Valley caldera, California, J. Volcanol. Geotherm. Res., 127, 269-303
Roux, P. (2009). Passive seismic imaging with directive ambient noise: application to surface waves and the San Andreas Fault in Parkfield, CA, Geophys, J. Int., 179, 367-373, doi: 10.1111/j.1365-246X.2009.04282.x
Sacks, I.S., Suyehiro, S., Linde, A.T., Snoke, J.A. (1978). Slow earthquakes and stress redistribution, Nature, 275, 599-602
Sacks, I.S., Linde, A.T., Snoke, J.A., Suyehiro, S. (1981). A slow earthquake sequence following the Izu-Oshima earthquake of 1978, in Earthquake prediction: An International Review, Maurice Ewing Ser., 617-628, AGU, Washington, D.C.
Sawazaki, K., Sato, H., Nakahara, H., Nishimura1, T.,(2006). Temporal change in site response caused by earthquake strong motion as revealed from coda spectral ratio measurement, Geophysical Research Letters, Vol. 33.
Seats, K.J., Lawrence, J.F., Prieto, G.A. (2012). Improved ambient noise correlation functions using Welch’s method, Geophysical Journal International, 188, Issue 2, 512-523
Sens Schönfelder, C., and Wegler, U. (2006). Passive image interferometry and seasonalvariations of seismic velocities at Merapi Volcano, Indonesia, Geophys. Res. Lett., 33, L23302, doi:10.1029/2006gl027797
Shapiro, N. M., and Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophysical Research Letters, Vol. 31, doi:10.1029/2004GL019491
Snieder, R., Grêt, A., Douma, H., Scales, J. (2002). Coda Wave Interferometry for estimating nonlinear behavior in seismic velocity, Science, 295, 2253-2255
Snieder, R. and Wapenaar, K. (2010). Imaging with ambient noise, American Institute of Physics, S-0031-9228-1009-030-7.
Stehly, L., Campillo, M. and Shapiro, N.M. (2006). A study of the seismic noise from its long-range correlation properties, Journal of Geophysical Research: Solid Earth (1978–2012), 111.
Stehly, L., Campillo, M., and Shapiro, N. M. (2007). Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts, Geophysical Journal International banner, 171, 223-230
Stehly, L., Campillo, M., Froment, B., Weaver, R. L. (2008). Reconstructing Green’s function by correlation of the coda of the correlation (C3) of ambient seismic noise, Journal of Geophysical Research: Solid Earth banner, Vol. 113
Toda, S., Stein, R. S., Richards-Dinger, K., Bozkurt, S. (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer, J. Geophys. Res., B05S16, doi:10.1029/2004JB003415
Wolfe J. E., Berg, E., Sutton, G. H. (1981). The change in strain comes mainly from the rain Kipapa, Oahu, Bull. Seismol. Soc. Am., 71, 1625-1635
Wu, S.M. (2014). Coseismic Velocity Reduction Correlated with Volumetric Strain Change Induced by Recent Large Earthquake in the Central Range of Taiwan, Department of Geoscienses College of Sciences National Taiwan University Master Thesis.
Yamauchi, T. (1987). Anomalous strain response to rainfall in relation to earthquake occurrence in the Tokai area, Japan, J. Phys. Earth, 35(1), 19-36
Yu, S. B., Chen, H. Y., Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area, Tectonophysics, Vol. 333, 199-217
Yu., S. B. and Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan,
Yu, S. B., and Liu, C. C. (1989). Fault Creep On The Central Segment Of The Longitudinal Valley Fault, Eastern Taiwan, Proceedings of the Geological Society of China, Vol. 32, 209-231, Tectonophysics, Vol. 274, 41-59
Yu, T.C. (2011). Temporal Variations of Crustal Seismic Velocities Associated with the 2006 Mw 6.1 Taitung Earthquake in the Arc-Continent Collision Suture Zone of Southeast Taiwan, Department of Geoscienses College of Sciences National Taiwan University Master Thesis.
Yu, T.C. and Hung, S.H. (2012). Temporal changes of seismic velocity associated with the 2006 Mw 6.1 Taitung earthquake in an arc-continent collision suture zone, Geophysical research letters, vol. 39, L12307, doi:10.1029/2012GL051970
中央氣象局地球物理資料管理系統
李建成 (2016),臺灣的地體構造,105年度全國地球科學教師研習暨第一屆地震科學志工研習營
經濟部中央地質調查所
經濟部水利署 水文年報
臺灣東部井下應變儀觀測網
臺灣颱風洪水研究中心 大氣水文研究資料庫
臺灣寬頻地震觀測網(Broadband Array in Taiwan for Seismology, BATS)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71218-
dc.description.abstract本研究結合中央氣象局(CWBSN)與台灣寬頻地震網(BATS)所提供之三分量地震儀,以及中央研究院地球科學研究所(ASIES)的井下應變儀連續記錄的周遭噪訊,透過計算每天單站自我相關函數(Auto-Correlation Function, ACF)和任兩站間的交互相關函數(Cross-Correlation Function, CCF)分別得到測站底下和站間穩定的經驗格林函數(Empirical Green's Function, EGF)之時序變化,並結合尾波干涉法(coda interferometry)量測各天EGF直達表面波後的尾波相對到時和波形相關性的差異,用以研究發生於2013年10月31日花東縱谷北段,地震矩規模6.2的瑞穗地震前後,震源附近淺層地殼受到擾動所引起的速度及散射構造在時間和空間變化的分佈情形和其可能成因。
研究結果顯示在0.1-0.9Hz的頻段中,震後速度擾動有突降或上升的現象,且震前的波形相關性明顯下降,意味著斷層帶在震前的微弱擾動會影響地殼散射構造。根據尾波前表面波的群速度和相速度分析,顯示訊號能量主要在3-5秒之間,對3公里附近的剪力波速度最為敏感,因此比較推得的速度變化與3 km深度附近的同震靜態體積應變,顯示速度下降路徑大致集中在體積應變拉張區域。除了同震變化之外,亦發現井下應變儀連續記錄重建的EGF所求得的速度擾動變化,有一約4個月的週期性變化,推測應與瑞穗鄰近地區地下水位有所關聯。另在地震之外的時間段發現尾波能量異常,波形相關係數劇烈起伏的現象,其可能為噪訊源受到夏季季風的影響,使得相關係數值與速度擾動結果皆受到干擾,若使用井下地震儀則可避免此異常結果,獲得更精確、僅受到地震應變影響的速度擾動結果。
zh_TW
dc.description.abstractWe use continuous three-component seismic and volumetric strain waveform data recorded by seismometers and borehole strainmeters, respectively, from CWBSN, BATS and AS of IES, to reconstruct daily variations of empirical Green’s functions (EGFs) from single-station auto-correlation functions (ACFs) and cross-correlation functions (CCFs) between pairs of stations. Coda wave interferometry is then employed to investigate temporal changes in crustal velocity and mechanical properties preceding and following the 2013 Mw 6.2 Ruisui Earthquake that struck the northern segment of the Longitudinal Valley in eastern Taiwan and investigate the possible physical causes for the changes.
By comparing the pre- and post-event coda waves extracted from the ACFs and CCFs, we present a strong case that not only coseismic velocity reduction but also preceding decorrelation of waveforms are explicitly revealed in both the seismic and strain CCFs filtered in the secondary microseism frequency band of 0.1-0.9 Hz. Dispersion analysis of surface waves before coda arrivals shows that signals are dominated in 3-5 s and most sensitive to shear wave velocity at about 3-km depth. We thus compare the obtained interstation path-average velocity perturbations with lateral variations of static volumetric strain induced by coseismic slip distribution and find that the regions showing pronounced coseismic velocity reductions often experience extentional strain changes. In addition to coseismic variations revealed in both the seismic and strain CCFs, quasi-periodic variations only appear in the strain derived EGFs, with a predominant cycle of about 4 months correlating with the groundwater fluctuations observed at Ruisui. During the season of summer monsoon between July and October, the extracted coda signals are anomalously weak and yield irregularly and largely fluctuating variations in the estimated velocity and waveform correlation coefficient. Such phenomena may be associated with the disturbance of very shallow structures affected by significant precipitation amounts and rapid rise of ground water level. The use of borehole seismometer can help prevent this obstruction and obtain more stable and accurate estimates in earthquake-induced velocity and structural perturbation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:59:13Z (GMT). No. of bitstreams: 1
ntu-107-R05224203-1.pdf: 9293002 bytes, checksum: 9ca6678e5e27196ca8500ee139bc961d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書...........................................................................................................#
誌謝....................................................................................................................................i
中文摘要...........................................................................................................................ii
Abstract............................................................................................................................iii
第一章 緒論.....................................................................................................................1
1.1 地震儀於監測地殼構造擾動之應用................................................................1
1.1.1地殼介質特性的時間變化.......................................................................1
1.1.2地震前後的地殼介質變化.......................................................................4
1.2 井下應變儀於監測地殼構造擾動之應用........................................................7
1.2.1於地震學之應用.......................................................................................7
1.2.2於大氣及水文因子之應用.......................................................................8
1.3研究地震與區域地質概況.................................................................................9
1.3.1 20131031花蓮瑞穗地震.........................................................................9
1.3.2研究區域地質概況................................................................................10
第二章 資料處理與研究方法.......................................................................................14
2.1 理論背景..........................................................................................................14
2.1.1周遭噪訊交互相關函數........................................................................16
2.1.2尾波干涉技術........................................................................................18
2.2資料與處理流程...............................................................................................21
2.2.1儀器與連續資料....................................................................................21
2.2.2重建經驗格林函數................................................................................27
2.3三分量格林函數...............................................................................................29
2.4參考格林函數與現時格林函數.......................................................................30
2.5尾波時間窗選取...............................................................................................32
2.6相對走時偏移量測方法...................................................................................36
2.6.1 移動視窗交叉頻譜法...........................................................................36
2.6.2 拉張法...................................................................................................37
2.6速度擾動量逆推...............................................................................................41
第三章 研究結果...........................................................................................................44
3.1瑞穗地震前後速度變化...................................................................................44
3.2瑞穗地震前後波形相關性變化.......................................................................46
3.3地震儀三分量交叉配對結果...........................................................................50
3.4垂直分量與三分量結果比較...........................................................................55
第四章 研究討論...........................................................................................................59
4.1同震靜態體積應變...........................................................................................59
4.2週期性速度擾動...............................................................................................64
4.3自我相關函數(ACF)時間變化.........................................................................66
4.4非地震導因之速度擾動與波形相關性異常...................................................69
4.5地表與井下地震儀比較...................................................................................73
第五章 研究結論...........................................................................................................74
第六章 參考文獻...........................................................................................................75
dc.language.isozh-TW
dc.subject周遭噪訊zh_TW
dc.subject交互相關函數zh_TW
dc.subject經驗格林函數zh_TW
dc.subject尾波干涉法zh_TW
dc.subject同震速度變化zh_TW
dc.subject同震體積應變zh_TW
dc.subjectcoseismic volumetric strainen
dc.subjectambient noiseen
dc.subjectempirical Green’s functionen
dc.subjectcross-correlation functionen
dc.subjectcoda wave interferometryen
dc.subjectcoseismic velocity changeen
dc.title利用尾波干涉法分析地震及應變資料探討2013瑞穗地震前後地殼變化zh_TW
dc.titleTemporal variations of crustal properties induced by the 2013 Ruisui, Taiwan earthquake from coda wave interferometry with ambient seismic and strain fieldsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許雅儒,梁文宗,龔源成,黃信樺
dc.subject.keyword周遭噪訊,交互相關函數,經驗格林函數,尾波干涉法,同震速度變化,同震體積應變,zh_TW
dc.subject.keywordambient noise,empirical Green’s function,cross-correlation function,coda wave interferometry,coseismic velocity change,coseismic volumetric strain,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201801299
dc.rights.note有償授權
dc.date.accepted2018-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
9.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved