Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71207
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊雅惠(Ya-Hui Chuang)
dc.contributor.authorHung-Wen Chenen
dc.contributor.author陳虹汶zh_TW
dc.date.accessioned2021-06-17T04:58:38Z-
dc.date.available2028-07-26
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-26
dc.identifier.citation1. Kaplan, M.M. and M.E. Gershwin, Primary biliary cirrhosis. N Engl J Med, 2005. 353(12): p. 1261-73.
2. Bergasa, N.V., J.K. Mehlman, and E.A. Jones, Pruritus and fatigue in primary biliary cirrhosis. Baillieres Best Pract Res Clin Gastroenterol, 2000. 14(4): p. 643-55.
3. Pares, A. and J. Rodes, Natural history of primary biliary cirrhosis. Clin Liver Dis, 2003. 7(4): p. 779-94.
4. Prince, M.I., et al., Asymptomatic primary biliary cirrhosis: clinical features, prognosis, and symptom progression in a large population based cohort. Gut, 2004. 53(6): p. 865-70.
5. Nakanuma, Y., Are esophagogastric varices a late manifestation in primary biliary cirrhosis? J Gastroenterol, 2003. 38(11): p. 1110-2.
6. Lleo, A., et al., Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology, 2010. 52(3): p. 987-98.
7. Bittencourt, P.L., et al., Prevalence of immune disturbances and chronic liver disease in family members of patients with primary biliary cirrhosis. J Gastroenterol Hepatol, 2004. 19(8): p. 873-8.
8. Hirschfield, G.M. and M.E. Gershwin, The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol, 2013. 8: p. 303-30.
9. Leung, P.S., et al., Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol, 2003. 170(10): p. 5326-32.
10. Poupon, R.E., R. Poupon, and B. Balkau, Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med, 1994. 330(19): p. 1342-7.
11. Nevens, F., et al., A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. N Engl J Med, 2016. 375(7): p. 631-43.
12. Nevens, F., K.D. Lindor, and D.E. Jones, Obeticholic Acid in Primary Biliary Cholangitis. N Engl J Med, 2016. 375(20): p. e41.
13. Palmer, J.M., J.A. Kirby, and D.E. Jones, The immunology of primary biliary cirrhosis: the end of the beginning? Clin Exp Immunol, 2002. 129(2): p. 191-7.
14. Berg, P.A., R. Klein, and J. Lindenborn-Fotinos, Antimitochondrial antibodies in primary biliary cirrhosis. J Hepatol, 1986. 2(1): p. 123-31.
15. Invernizzi, P., et al., Autoantibodies against nuclear pore complexes are associated with more active and severe liver disease in primary biliary cirrhosis. J Hepatol, 2001. 34(3): p. 366-72.
16. Migita, K., et al., Serum BAFF and APRIL levels in patients with PBC. Clin Immunol, 2010. 134(2): p. 217-25.
17. Van de Water, J., et al., Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med, 1995. 181(2): p. 723-33.
18. Van de Water, J., et al., Evidence for the targeting by 2-oxo-dehydrogenase enzymes in the T cell response of primary biliary cirrhosis. J Immunol, 1991. 146(1): p. 89-94.
19. Lohr, H., et al., Autoreactive liver-infiltrating T cells in primary biliary cirrhosis recognize inner mitochondrial epitopes and the pyruvate dehydrogenase complex. J Hepatol, 1993. 18(3): p. 322-7.
20. Jones, D.E., et al., T-cell responses to the components of pyruvate dehydrogenase complex in primary biliary cirrhosis. Hepatology, 1995. 21(4): p. 995-1002.
21. Harada, K., et al., Type1 and type2 memory T cells imbalance shown by expression of intrahepatic chemokine receptors relates to pathogenesis of primary biliary cirrhosis. Hepatol Res, 2002. 24(3): p. 290.
22. Harada, K., et al., In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset. Hepatology, 1997. 25(4): p. 791-6.
23. Nagano, T., et al., Cytokine profile in the liver of primary biliary cirrhosis. J Clin Immunol, 1999. 19(6): p. 422-7.
24. Lan, R.Y., et al., Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun, 2009. 32(1): p. 43-51.
25. Harada, K., et al., Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol, 2009. 157(2): p. 261-70.
26. Tsuda, M., et al., Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology, 2011. 54(4): p. 1293-302.
27. Lan, R.Y., et al., Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology, 2006. 43(4): p. 729-37.
28. Kesar, V. and J.A. Odin, Toll-like receptors and liver disease. Liver Int, 2014. 34(2): p. 184-96.
29. Broering, R., et al., Corticosteroids shift the Toll-like receptor response pattern of primary-isolated murine liver cells from an inflammatory to an anti-inflammatory state. Int Immunol, 2011. 23(9): p. 537-44.
30. Mao, T.K., et al., Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology, 2005. 42(4): p. 802-8.
31. Nakamura, M., et al., Increased expression of Toll-like receptor 3 in intrahepatic biliary epithelial cells at sites of ductular reaction in diseased livers. Hepatol Int, 2008. 2(2): p. 222-30.
32. Wang, A.P., et al., Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J Autoimmun, 2005. 25(1): p. 85-91.
33. Zhao, J., et al., Altered biliary epithelial cell and monocyte responses to lipopolysaccharide as a TLR ligand in patients with primary biliary cirrhosis. Scand J Gastroenterol, 2011. 46(4): p. 485-94.
34. Honda, Y., et al., Altered expression of TLR homolog RP105 on monocytes hypersensitive to LPS in patients with primary biliary cirrhosis. J Hepatol, 2007. 47(3): p. 404-11.
35. Godfrey, D.I., et al., NKT cells: what's in a name? Nat Rev Immunol, 2004. 4(3): p. 231-7.
36. Kita, H., et al., Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology, 2002. 123(4): p. 1031-43.
37. Chuang, Y.H., et al., Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun, 2006. 26(4): p. 232-40.
38. Shimoda, S., et al., The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clin Exp Immunol, 2012. 168(3): p. 279-84.
39. Amano, K., et al., Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol, 2005. 174(9): p. 5874-83.
40. Wakabayashi, K., et al., Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology, 2008. 48(2): p. 531-40.
41. Wu, S.J., et al., Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology, 2011. 53(3): p. 915-25.
42. Syu, B.J., et al., Dual Roles of IFN-gamma and IL-4 in the Natural History of Murine Autoimmune Cholangitis: IL-30 and Implications for Precision Medicine. Sci Rep, 2016. 6: p. 34884.
43. Hsueh, Y.H., et al., AAV-IL-22 modifies liver chemokine activity and ameliorates portal inflammation in murine autoimmune cholangitis. J Autoimmun, 2016. 66: p. 89-97.
44. Kawata, K., et al., Identification of potential cytokine pathways for therapeutic intervention in murine primary biliary cirrhosis. PLoS One, 2013. 8(9): p. e74225.
45. Boulay, J.L., J.J. O'Shea, and W.E. Paul, Molecular phylogeny within type I cytokines and their cognate receptors. Immunity, 2003. 19(2): p. 159-63.
46. Vignali, D.A. and V.K. Kuchroo, IL-12 family cytokines: immunological playmakers. Nat Immunol, 2012. 13(8): p. 722-8.
47. Trinchieri, G., S. Pflanz, and R.A. Kastelein, The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity, 2003. 19(5): p. 641-4.
48. Goriely, S. and M. Goldman, Interleukin-12 family members and the balance between rejection and tolerance. Curr Opin Organ Transplant, 2008. 13(1): p. 4-9.
49. Dibra, D., et al., Interleukin-30: a novel antiinflammatory cytokine candidate for prevention and treatment of inflammatory cytokine-induced liver injury. Hepatology, 2012. 55(4): p. 1204-14.
50. Dambuza, I.M., et al., IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nat Commun, 2017. 8(1): p. 719.
51. Choi, J.K., et al., IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis. Front Immunol, 2017. 8: p. 1258.
52. Pflanz, S., et al., IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity, 2002. 16(6): p. 779-90.
53. Sonobe, Y., et al., Production of IL-27 and other IL-12 family cytokines by microglia and their subpopulations. Brain Res, 2005. 1040(1-2): p. 202-7.
54. Devergne, O., et al., A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes. J Virol, 1996. 70(2): p. 1143-53.
55. Maaser, C., et al., Expression of Epstein-Barr virus-induced gene 3 and other interleukin-12-related molecules by human intestinal epithelium. Immunology, 2004. 112(3): p. 437-45.
56. Liu, J., X. Guan, and X. Ma, Regulation of IL-27 p28 gene expression in macrophages through MyD88- and interferon-gamma-mediated pathways. J Exp Med, 2007. 204(1): p. 141-52.
57. Stumhofer, J.S., et al., A role for IL-27p28 as an antagonist of gp130-mediated signaling. Nat Immunol, 2010. 11(12): p. 1119-26.
58. Zhang, S., et al., High susceptibility to liver injury in IL-27 p28 conditional knockout mice involves intrinsic interferon-gamma dysregulation of CD4+ T cells. Hepatology, 2013. 57(4): p. 1620-31.
59. Mitra, A., et al., IL-30 (IL27p28) attenuates liver fibrosis through inducing NKG2D-rae1 interaction between NKT and activated hepatic stellate cells in mice. Hepatology, 2014. 60(6): p. 2027-39.
60. Chong, W.P., et al., IL-27p28 inhibits central nervous system autoimmunity by concurrently antagonizing Th1 and Th17 responses. J Autoimmun, 2014. 50: p. 12-22.
61. Wang, R.X., et al., Novel IL27p28/IL12p40 cytokine suppressed experimental autoimmune uveitis by inhibiting autoreactive Th1/Th17 cells and promoting expansion of regulatory T cells. J Biol Chem, 2012. 287(43): p. 36012-21.
62. Shao, J., et al., AAV2-mediated subretinal gene transfer of mIL-27p28 attenuates experimental autoimmune uveoretinitis in mice. PLoS One, 2012. 7(5): p. e37773.
63. Yan, J., et al., Interleukin-30 (IL27p28) alleviates experimental sepsis by modulating cytokine profile in NKT cells. J Hepatol, 2016. 64(5): p. 1128-1136.
64. Di Carlo, E., Interleukin-30: A novel microenvironmental hallmark of prostate cancer progression. Oncoimmunology, 2014. 3(1): p. e27618.
65. Daya, S. and K.I. Berns, Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev, 2008. 21(4): p. 583-93.
66. Cheung, A.K., et al., Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J Virol, 1980. 33(2): p. 739-48.
67. Deyle, D.R. and D.W. Russell, Adeno-associated virus vector integration. Curr Opin Mol Ther, 2009. 11(4): p. 442-7.
68. Xiao, X., J. Li, and R.J. Samulski, Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol, 1996. 70(11): p. 8098-108.
69. Grimm, D., et al., In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol, 2008. 82(12): p. 5887-911.
70. Weiss, A., et al., Ligand-receptor interactions required for commitment to the activation of the interleukin 2 gene. J Immunol, 1987. 138(7): p. 2169-76.
71. Dwyer, J.M. and C. Johnson, The use of concanavalin A to study the immunoregulation of human T cells. Clin Exp Immunol, 1981. 46(2): p. 237-49.
72. Tiegs, G., J. Hentschel, and A. Wendel, A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest, 1992. 90(1): p. 196-203.
73. Gao, B., W.I. Jeong, and Z. Tian, Liver: An organ with predominant innate immunity. Hepatology, 2008. 47(2): p. 729-36.
74. Gao, B., S. Radaeva, and O. Park, Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol, 2009. 86(3): p. 513-28.
75. Mizuhara, H., et al., T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med, 1994. 179(5): p. 1529-37.
76. Kusters, S., et al., Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology, 1996. 111(2): p. 462-71.
77. Heymann, F., et al., The concanavalin A model of acute hepatitis in mice. Lab Anim, 2015. 49(1 Suppl): p. 12-20.
78. Manns, M.P., et al., Diagnosis and management of autoimmune hepatitis. Hepatology, 2010. 51(6): p. 2193-213.
79. Krawitt, E.L., Autoimmune hepatitis. N Engl J Med, 2006. 354(1): p. 54-66.
80. Fallatah, H.I. and H.O. Akbar, Autoimmune hepatitis as a unique form of an autoimmune liver disease: immunological aspects and clinical overview. Autoimmune Dis, 2012. 2012: p. 312817.
81. Fontenot, J.D., et al., Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity, 2005. 22(3): p. 329-41.
82. McClure, C., et al., Production and titering of recombinant adeno-associated viral vectors. J Vis Exp, 2011(57): p. e3348.
83. Sabat, R., et al., Biology of interleukin-10. Cytokine Growth Factor Rev, 2010. 21(5): p. 331-44.
84. Kuhn, R., et al., Interleukin-10-deficient mice develop chronic enterocolitis. Cell, 1993. 75(2): p. 263-74.
85. Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.
86. Takeda, K. and S. Akira, Toll-like receptors in innate immunity. Int Immunol, 2005. 17(1): p. 1-14.
87. Nakanuma, Y. and G. Ohta, Histometric and serial section observations of the intrahepatic bile ducts in primary biliary cirrhosis. Gastroenterology, 1979. 76(6): p. 1326-32.
88. Koarada, S., et al., Genetic control of autoimmunity: protection from diabetes, but spontaneous autoimmune biliary disease in a nonobese diabetic congenic strain. J Immunol, 2004. 173(4): p. 2315-23.
89. Irie, J., et al., NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med, 2006. 203(5): p. 1209-19.
90. Wakabayashi, K., et al., IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology, 2006. 44(5): p. 1240-1249.
91. Wang, J.J., et al., Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice. Clin Exp Immunol, 2014. 175(2): p. 192-201.
92. Bogdanos, D.P., et al., Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol, 2004. 40(1): p. 31-9.
93. Padgett, K.A., et al., Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis. J Autoimmun, 2005. 24(3): p. 209-19.
94. Mattner, J., et al., Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe, 2008. 3(5): p. 304-15.
95. Degott, C., et al., Histopathological study of primary biliary cirrhosis and the effect of ursodeoxycholic acid treatment on histology progression. Hepatology, 1999. 29(4): p. 1007-12.
96. Lindor, K.D., et al., Primary biliary cirrhosis. Hepatology, 2009. 50(1): p. 291-308.
97. Bettelli, E., et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006. 441(7090): p. 235-8.
98. Wang, D., et al., CD4+ CD25+ but not CD4+ Foxp3+ T cells as a regulatory subset in primary biliary cirrhosis. Cell Mol Immunol, 2010. 7(6): p. 485-90.
99. Zhang, W., et al., Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology, 2009. 49(2): p. 545-52.
100. Liu, X., et al., A protective role of IL-30 via STAT and ERK signaling pathways in macrophage-mediated inflammation. Biochem Biophys Res Commun, 2013. 435(2): p. 306-12.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71207-
dc.description.abstract原發性膽汁性膽管炎(Primary biliary cholangitis, PBC)是一個肝臟慢性自體免疫疾病,在我們先前的研究中發現將攜帶IFN-γ基因的Adeno-associated virus (AAV)給予小鼠的同時誘發小鼠產生PBC,在疾病早期與對照組小鼠相比發炎程度升高很多,但在疾病晚期可能因為Interlukin-30 (IL-30)的上升使IFN-γ造成的疾病嚴重程度趨緩,因此推論IL-30在PBC小鼠中可能具有免疫抑制功能。IL-30,是IL-27的次單元體,又稱為IL-27p28,其他研究指出IL-30可以減緩肝臟發炎所造成的損傷與纖維化。因此在本研究中我們將AAV-mIL-30打入2-OA-OVA誘發的PBC小鼠模式,探討IL-30在原發性膽汁性膽管炎中是否具有免疫抑制功能。首先,我們使用已被廣泛研究的conA誘發之急性肝損傷小鼠模型確認AAV-mIL-30在體內的免疫抑制能力,發現給予AAV-mIL-30的急性肝損傷小鼠其血清中的IFN-γ與IL-12與對照組小鼠相比明顯降低,顯示AAV-mIL-30在體內確實有免疫抑制的能力。在PBC中,我們使用2-OA-OVA誘發小鼠產生PBC後三週再給予AAV-mIL-30,兩週後分析肝臟浸潤免疫細胞的數目與功能,發現IL-30可以降低CD4+ T細胞的活化與IFN-γ的分泌,且抗原呈獻細胞的功能被抑制,而CD4+ Foxp3+ 調節性T細胞數目增加,因此我們認為IL-30是透過抑制抗原呈獻細胞與增加調節性T細胞來達到抑制T細胞的效果。另外,我們也發現在給予AAV-mIL-30小鼠肝臟中類鐸受體(Toll-like receptor, TLR)的表現量下降。而在11週PBC小鼠中我們發現給予AAV-mIL-30小鼠相較於對照組小鼠,肝臟中第一型纖維蛋白的表現量下降,但是肝臟門脈區淋巴細胞浸潤的情形並沒有被減緩。由以上實驗結果顯示IL-30在PBC中可以抑制T細胞的活化與分泌IFN-γ的能力,且可以增加調節性T細胞。zh_TW
dc.description.abstractPrimary biliary cholangitis (PBC) is a chronic liver autoimmune disease. Our previous study found that PBC mice administered with adeno-associated virus-expressing IFN-γ (AAV-IFN-γ) showed a severe disease performance in early phase but subsequently led to downregulation of chronic inflammation with an increase of interleukin-30 (IL-30). IL-30, also called IL-27p28, has been shown to attenuate liver injury and fibrosis. In this study, we investigated whether IL-30 had an immunosuppressive function in PBC by administering mouse IL-30 expressing AAV (AAV-mIL-30) to 2-OA-OVA immunized PBC mice. At first, we defined the immunosuppressive function of AAV-mIL-30 in vivo by a well-known conA-induced hepatitis mouse model. The results showed that serum levels of IFN-γ and IL-12 were decreased in AAV-mIL-30 receiving conA induced hepatitis mice, indicating that AAV-mIL-30 had an immunosuppressive function in vivo. In PBC, the expression of CD25 and IFN-γ secretion in CD4+ T cells were decreased in mice administered with AAV-mIL-30 three weeks post 2-OA-OVA immunization. The suppressive function of IL-30 might be due to the increase the frequency of CD4+Foxp3+ regulatory T cells and inhibition of the function of antigen presenting cells. In addition, we also found the expression of toll-like receptors (TLRs) in liver was decreased in AAV-mIL-30 receiving PBC mice. Moreover, the type I collagen production was decreased while the lymphocytes infiltration in portal area was not changed in AAV-mIL-30 injected mice 11 weeks post 2-OA-OVA immunization. These results suggested that IL-30 could suppress the function of T cells and increase the number of Tregs in PBC.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:58:38Z (GMT). No. of bitstreams: 1
ntu-107-R05424004-1.pdf: 2213665 bytes, checksum: ef1edfa7cc3c83b1206726d582cd29dd (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Abbreviation v
Content vii
Content of Figures x
Content of Tables xii
Chapter 1. Introduction 1
1.1 Primary biliary cholangitis (PBC) 2
1.2 Adaptive immune response in PBC 3
1.2.1 Humoral immune response 3
1.2.2 Cellular immune response 4
1.3 Innate immunity in PBC 5
1.4 Xenobiotic-induced PBC murine model 6
1.5 Immune response in xenobiotic-induced PBC mice 7
1.6 IL-12 family cytokines 8
1.7 Biological function of Interleukin-30 (IL-30) 8
1.8 IL-30 and autoimmune diseases 9
1.9 IL-30 and other diseases 9
1.10 Adeno-associated virus (AAV) 10
1.11 AAV-DJ Helper Free Bicistronic Expression System (GFP) 11
1.12 Concanavalin A (ConA) induced hepatitis murine model 11
Specific aims 13
Chapter 2. Materials and Methods 14
2.1 Mice 15
2.2 AAV-mIL-30 packaging 15
2.3 AAV purification 16
2.4 AAV concentration 17
2.5 AAV titration 17
2.6 AAV injection 18
2.7 Serum sampling 18
2.8 Enzyme-Linked Immunosorbent Assay (ELISA) 19
2.9 Liver RNA extraction and cDNA synthesis 19
2.10 Quantitative real-time PCR (qRT-PCR) 20
2.11 Liver perfusion and pathological section 20
2.12 Masson’s trichrome (TRI) stain 21
2.13 Isolation of liver leukocytes 21
2.14 ConA induced hepatitis murine model 22
2.15 2-OA-OVA/α-GalCer induced PBC murine model 22
2.16 Serum anti-PDC-E2 IgG and IgM level 23
2.17 Serum cytokines detection 24
2.18 Cell surface staining 24
2.19 Intracellular cytokine detection 25
2.20 Intracellular staining (ICS) 25
2.21 Functional assay of antigen presenting cells (APCs) 26
2.22 Intracellular staining for Foxp3 26
2.23 Flow cytometry analysis 27
2.24 Statistical analysis 28
Chapter 3. Results 29
3.1 No significant inflammation response in naïve mice injected with AAV-mIL-30.30
3.2 AAV-mIL-30 had immunosuppressive function in conA-induced hepatitis murine model. 31
3.3 IL-30 in PBC murine model. 31
3.3.1 IL-30 decreased the activation of T cells. 31
3.3.2 IL-30 decreased the IFN-γ secretion of CD4+ T cells. 32
3.3.3 IL-30 decreased the proportion of PMNs. 32
3.3.4 IL-30 did not affect the antibody production of B cells. 33
3.4 The possible mechanism of IL-30 in PBC. 33
3.4.1 IL-30 did not increase the expression of IL-10 in liver. 33
3.4.2 IL-30 did not affect the DCs population and antigen presenting function. 34
3.4.3 IL-30 decreased the ability of cytokine production in liver leukocytes activated with TLR agonists. 34
3.4.4 IL-30 decreased the mRNA expression of TLR4 and TLR7 in liver. 35
3.5 The therapeutic effect of IL-30 in late stage PBC. 35
3.5.1 IL-30 did not attenuate the liver injury. 36
3.5.2 IL-30 slightly decreased the expression of collagen production in liver. 36
3.5.3 IL-30 increased the percentage and the number of CD4+ Foxp3+ regulatory T cells. 36
3.5.4 IL-30 seems to increase the serum expression of various cytokines and
chemokines after 11 weeks post immunization. 37
3.6 Conclusion 38
Chapter 4. Discussion 39
Figures 46
Tables 68
Reference 71
Appendix 79
dc.language.isoen
dc.subject自體免疫疾病zh_TW
dc.subject原發性膽汁性膽管炎zh_TW
dc.subjectCD4+ T細胞zh_TW
dc.subjectAAVzh_TW
dc.subject免疫療法zh_TW
dc.subjectIL-30zh_TW
dc.subjectCD4+ T cells.en
dc.subjectautoimmune diseaseen
dc.subjectInterleukin-30en
dc.subjectimmune therapyen
dc.subjectAAVen
dc.subjectPrimary biliary cholangitisen
dc.title探討IL-30於原發性膽汁性膽管炎之免疫調控作用zh_TW
dc.titleInvestigating the Immunoregulatory Effects of Interleukin-30 on Primary Biliary Cholangitisen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇剛毅,張永祺,沈家瑞
dc.subject.keyword原發性膽汁性膽管炎,自體免疫疾病,IL-30,免疫療法,AAV,CD4+ T細胞,zh_TW
dc.subject.keywordPrimary biliary cholangitis,autoimmune disease,Interleukin-30,immune therapy,AAV,CD4+ T cells.,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201801995
dc.rights.note有償授權
dc.date.accepted2018-07-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved