Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71195
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭瑞祥
dc.contributor.authorShan-Chen Wuen
dc.contributor.author伍善真zh_TW
dc.date.accessioned2021-06-17T04:58:00Z-
dc.date.available2021-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-26
dc.identifier.citation英文文獻
Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of management, 17(1), 99-120.
Bain, J. S. (1951). Relation of profit rate to industry concentration: American manufacturing, 1936–1940. The Quarterly Journal of Economics, 65(3), 293-324.
Cooper, L. G. (2000). Strategic marketing planning for radically new products. Journal of marketing, 64(1), 1-16.
Grant, R. M. (2016). Contemporary strategy analysis: Text and cases edition. John Wiley & Sons.
Johnson, D. (2001). What is innovation and entrepreneurship? Lessons for larger organisations. Industrial and commercial training, 33(4), 135-140.
Porter, M. E. (2008). The five competitive forces that shape strategy. Harvard business review, 86(1), 25-40.
Porter, M. E. (2008). Competitive strategy: Techniques for analyzing industries and competitors. Simon and Schuster.
Powell, T. C. (1996). How much does industry matter? An alternative empirical test. Strategic Management Journal, 323-334.
Porter, M. E. (1985). Competitive advantage: creating and sustaining superior performance. 1985.
Porter, M. E. (1980). Competitive strategy: Techniques for analyzing industries. Competitors, The Free Pres,. New York. p.12.
PwC.Inc, (2017, January), China’s impact on the semiconductor industry: 2016 update. Retrieved June 21, 2018, from http://gimi.tmu.edu.tw/files/archive/33_d83cf40f.pdf
Sleuwaegen, L., & Dehandschutter, W. (1986). The critical choice between the concentration ratio and the H-index in assessing industry performance. The Journal of Industrial Economics, 193-208.
Shane, S., & Venkataraman, S. (2000). The promise of entrepreneurship as a field of research. Academy of Management Review, 25, 217–226.
Timmons, J. A., & Spinelli, S. (1999). New venture creation: Entrepreneurship for the 21st century.
Weerawardena, J., O'Cass, A., & Julian, C. (2006). Does industry matter? Examining the role of industry structure and organizational learning in innovation and brand performance. Journal of business research, 59(1), 37-45.

中文文獻
羅宗敏, 王俊人, & 許雄傑. (2007). 創業者人格特質對創業績效影響之研究: 關係網絡之中介效果. 創業管理研究, 2(4), 57-88.

英文網頁資料
Allied Market Research(2016/12),Graphic Processing Unit (GPU) Market to Reach $157.1 Billion, Globally by 2022,Retrieved from https://www.alliedmarketresearch.com/press-release/graphic-processing-unit-market.html
BOA Merrill Lynch(2016/10/02),Deep Learning and the processor chips fueling the AI revolution – a primer,Retrieved from https://olui2.fs.ml.com/publish/content/application/pdf/GWMOL/Deep-Learning-AI-Primer.pdf
BCC Research(2018/3/15),Hyperscale Data Center Market to See 20.3% Annual Growth Through 2022,Retrieved from https://globenewswire.com/news-release/2018/03/15/1438053/0/en/Hyperscale-Data-Center-Market-to-See-20-3-Annual-Growth-Through-2022.html
Danny Vena (2017/11/05),AI Continues to Drive NVIDIA's Staggering Growth,retrieved from https://www.fool.com/investing/2017/11/15/ai-continues-to-drive-nvidias-staggering-growth.aspx
Global artificial intelligence (AI) chips market 2017-2021. (2017, Jul 15). ICT Monitor Worldwide,Retrieved from https://search.proquest.com/docview/1919080350?accountid=14229
IC Insights (2017/10/18),IC Insights Raises 2017 IC Market Forecast to +22%,retrieved from http://www.icinsights.com/news/bulletins/IC-Insights-Raises-2017-IC-Market-Forecast-To-22-/
Jon Peddie Research(2017/11/20),Overall GPU Shipments Increased 9.3% From Last Quarter, AMD Increased 8% Nvidia Increased 30%,retrieved from https://www.jonpeddie.com/press-releases/overall-gpu-shipments-increased-9.3-from-last-quarter-amd-increased-8-nvidi/
Steam(2018/6/14),Steam Hardware & Software Survey: May 2018,取自https://store.steampowered.com/hwsurvey/videocard/
Seth Archer(2017/08/31),RBC: Nvidia is set to dominate the next wave of blockchain technology (NVDA),retrieved from http://markets.businessinsider.com/news/stocks/nvidia-stock-price-is-set-to-dominate-the-next-wave-of-blockchain-technology-2017-8-1002297958


中文網頁資料
AI掘金志(2017/11/01),對話 NVIDIA 副總裁潘迪:賦能安防, NVIDIA 如何利用 AI 讓城市更智慧,取自 http://www.sohu.com/a/201704152_651994
Inside硬塞的網路趨勢觀察(2017/05/30),推翻摩爾定律、引領深度學習,NVIDIA 怎成世界最大「AI 軍火商」?,取自 https://www.inside.com.tw/2017/05/30/ai-arms-dealers-nvidia-computex-taiwan
NVIDIA官網(2018/6/14),公司里程碑,取自http://www.nvidia.com/page/corporate_timeline.html
NVIDIA(2011/05/09),NVIDIA收購基頻與射頻技術領導商Icera,取自http://www.nvidia.com.tw/object/nvidia-acquire-baseband-rf-tech-leader-icera-press-20110509-tw.html
百度百科(2018/6/14),黃仁勳,取自https://baike.baidu.com/item/%E9%BB%84%E4%BB%81%E5%8B%8B
沐樂園成長美股(2016/10/15),NVIDIA (NVDA) 個股分析 系列二: 產業分析,取自http://moolleryuan.blogspot.tw/2016/10/nvidia-nvda_49.html
股感知識庫(2017/05/19),NVIDIA 的榮耀背後:過去、現在和未來(上),取自https://www.stockfeel.com.tw/nvidia-%E7%9A%84%E6%A6%AE%E8%80%80%E8%83%8C%E5%BE%8C%EF%BC%9A%E9%81%8E%E5%8E%BB%E3%80%81%E7%8F%BE%E5%9C%A8%E5%92%8C%E6%9C%AA%E4%BE%86%EF%BC%88%E4%B8%8A%EF%BC%89/
科技報橘(2017/11/14),2 年不到股價翻 6 倍!NVIDIA 的「崛起奇蹟」帶動台灣供應鏈起飛,取自https://buzzorange.com/techorange/2017/11/14/nvidia-fly/
科技產業資訊室(2018/01/15),類比IC成長強勁延續至2022,取自http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=14120
科技產業資訊室(2017/09/05),競逐AI晶片誰將勝出?,取自http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=13742
陳婉儀(2017/06),2017半導體產業年鑑,經濟部技術處
商業週刊(2016/09/29),矽谷悍將 Nvidia黃仁勳,取自https://magazine.businessweekly.com.tw/Article_mag_page.aspx?id=62730&p=2
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71195-
dc.description.abstract在人工智慧、大數據成為風雲題材之際,2017年度《麻省理工科技評論》(MIT Technology Review) 公布了全球50大最聰明公司榜單,前五名登榜公司的第一名即為NVIDIA,由2015年位列榜上第28位,2016年進步到12位,2017則一舉搶下冠軍寶座。一家製造GPU、以解決圖像問題為主要業務的公司,如何在21世紀之初嗅到整個大數據潮流的發展,進而解放GPU平行運算功能,使GPU應用從傳統圖像處理轉移到運算與深度學習,是非常值得探討的問題。
本研究透過個案研究法,進行初級與次級資料蒐集,分析NVIDIA的產業環境、競爭者狀況,了解GPU產業的NVIDIA過去是如何透過創造獨特價值、追求高品質,在高端市場、高附加價值的目標設定下,創造開發端到使用者端的生態圈,來達到用戶的黏性,並進而開拓新的產品應用市場。NVIDIA商業模式主要有兩大重點,分別是平台網絡、槓桿與規模效應,進而創造和用戶間的良性循環。平台網絡部分藉由策略手段使用戶能留在自己的生態系統中,並由開源和授權手段去影響力不能及的市場,創造未來潛在商機;槓桿和規模效應則以一個架構為基礎,將其發揮到人工智慧、遊戲、資料中心、自動駕駛等不同的終端市場應用,使基礎架構發揮更大功能,且減少不必要資源浪費、以最低成本達到最大效益。
最後,透過分析輝達的發展策略與對應資源能力、重要里程碑與關鍵決策等,歸納出管理上的意涵,並對個案公司與其所要轉向切入的AI運算產業提出策略建議,包含產業發展重點、未來可能須注意的動態發展方向等。
zh_TW
dc.description.abstractWhile Artificial Intelligence(AI) and big data became hot topics, NVIDIA got first place on the list of 50 smartest companies on the world, which announced by 2017 MIT Technology Review. At 2015, it ranked 28th, then progressed to 12th in 2016, and finally hit the champion on 2017. How can a company which manufactures GPU and used to solve graphic problems got the future data trend and leveraged their key strength to parallel computing? How they make GPU application transfer from traditional graphic processing to computing and deep learning? The research aims to answer what kind of environment did they encountered, what’s the key resources and ablilities to success.
By case study method, this research analyzes initial and secondary data in order to get the industry environment, also competitive condition. Then look into how NVIDIA create unique values, pursue high quality and construct an ecosystem between developer and users. The business model of NVIDIA has two major focus, one is create ecosystem for users through platform network, and the other is leverage the economic of scale through one framework. NVIDIA use some strategies to keep users stay in their ecosystem, and affect the market which they are unable to reach through open API and licensing. Moreover, through one framework strategy it can leverage the economic of scale to different final applications with lower cost.
Through the study of development strategies and key resources, key decisions. Finally, we induct some strategy recommendations for NVIDIA and the AI industry which NVIDIA is intended to enter.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:58:00Z (GMT). No. of bitstreams: 1
ntu-107-R05741021-1.pdf: 9361907 bytes, checksum: 044eb03778481836ba697b7915737f1a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝詞
摘要
ABSTRACT
目錄 ................................. 1
圖目錄 ............................... 3
表目錄 ............................... 5
第一章 緒論........................... 6
第一節、 研究背景與動機 ............... 6
第二節、 研究目的 .................... 7
第三節、 研究方法與流程 ............... 7
第四節、 研究架構 .................... 8
第二章 文獻回顧 ..................... 10
第一節、 產業結構與集中度 ............ 10
第二節、 五力分析與產業競爭 .......... 13
第三節、 創新業與企家精神 ............ 15
第四節、 競爭優勢與資源能力 .......... 18
第五節、 生命週期理論與BCG矩陣 ....... 21
第三章 產業與環境分析................ 24
第一節、 半導體設計產業介紹 .......... 24
第二節、 半導體設計產業趨勢分析 ...... 29
第三節、 GPU產業介紹與趨勢分析 ....... 34
第四節、 人工智慧產業介紹與趨勢分析 ─GPU新應用 ...... 40
第五節、 GPU產業五力分析 ............. 44
第六節、 競爭環境與者介紹 ............ 53
第七節、 競爭分析 ................... 62
第四章 個案公司分析 ................ 77
第一節、 個案公司介紹 ............... 77
第二節、 發展階段分析 ............... 92
第三節、 資源與能力 ................ 96
第四節、 公司經營策略 .............. 102
第五節、 個案研究小結 .............. 112
第五章 結論與建議 .................. 114
第一節、 結論 ..................... 114
第二節、 研究限制 .................. 123
參考文獻 .......................... 124
附錄、 NVIDIA財務報表與比率 財務報表與比率 ....... 129
dc.language.isozh-TW
dc.subject輝達zh_TW
dc.subject發展策略zh_TW
dc.subject圖像晶片zh_TW
dc.subject資源與能力分析zh_TW
dc.subject人工智慧zh_TW
dc.subjectGraphic Chips:Growth Strategyen
dc.subjectNVIDIAen
dc.subjectResource and Ability Analysisen
dc.subjectArtificial Intelligenceen
dc.title半導體晶片設計廠商事業發展策略分析:以輝達為例zh_TW
dc.titleAnalysis of the Business and Growth Strategy in IC Chip Design Industry: The Case of NVIDIAen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor陳忠仁
dc.contributor.oralexamcommittee柯冠州,黃怡芬
dc.subject.keyword圖像晶片,發展策略,輝達,資源與能力分析,人工智慧,zh_TW
dc.subject.keywordGraphic Chips:Growth Strategy,NVIDIA,Resource and Ability Analysis,Artificial Intelligence,en
dc.relation.page134
dc.identifier.doi10.6342/NTU201801991
dc.rights.note有償授權
dc.date.accepted2018-07-27
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept商學研究所zh_TW
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
9.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved