請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71189
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 闕居振(Chu-Chen Chueh) | |
dc.contributor.author | Chang-Hung Tsai | en |
dc.contributor.author | 蔡長紘 | zh_TW |
dc.date.accessioned | 2021-06-17T04:57:40Z | - |
dc.date.available | 2018-08-07 | |
dc.date.copyright | 2018-08-07 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-27 | |
dc.identifier.citation | 1. Chao, P.-Y.; Wu, H.-C.; Lu, C.; Hong, C.-W.; Chen, W.-C., Biaxially extended conjugated polymers with thieno [3, 2-b] thiophene building block for high performance field-effect transistor applications. Macromolecules 2015, 48 (16), 5596-5604.
2. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews 2009, 109 (11), 5868-5923. 3. Yip, H.-L.; Jen, A. K.-Y., Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy & Environmental Science 2012, 5 (3), 5994-6011. 4. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542-546. 5. Qi, B.; Wang, J., Open-circuit voltage in organic solar cells. Journal of Materials Chemistry 2012, 22 (46), 24315-24325. 6. Etxebarria, I.; Ajuria, J.; Pacios, R., Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Organic Electronics 2015, 19, 34-60. 7. Meng, L.; You, J.; Guo, T.-F.; Yang, Y., Recent advances in the inverted planar structure of perovskite solar cells. Accounts of chemical research 2015, 49 (1), 155-165. 8. Zhou, Z.; Pang, S.; Liu, Z.; Xu, H.; Cui, G., Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A 2015, 3 (38), 19205-19217. 9. Qi, B.; Wang, J., Fill factor in organic solar cells. Physical Chemistry Chemical Physics 2013, 15 (23), 8972-8982. 10. Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F., Organic solar cells based on non-fullerene acceptors. Nature materials 2018, 17 (2), 119. 11. Cheng, P.; Li, G.; Zhan, X.; Yang, Y., Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics 2018, 12 (3), 131. 12. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270 (5243), 1789-1791. 13. Zhang, G.; Zhang, K.; Yin, Q.; Jiang, X.-F.; Wang, Z.; Xin, J.; Ma, W.; Yan, H.; Huang, F.; Cao, Y., High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. Journal of the American Chemical Society 2017, 139 (6), 2387-2395. 14. An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B., Versatile ternary organic solar cells: a critical review. Energy & Environmental Science 2016, 9 (2), 281-322. 15. Yu, R.; Yao, H.; Hou, J., Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors. Advanced Energy Materials 2017. 16. Cheng, P.; Zhan, X., Versatile third components for efficient and stable organic solar cells. Materials Horizons 2015, 2 (5), 462-485. 17. Yang, Y. M.; Chen, W.; Dou, L.; Chang, W.-H.; Duan, H.-S.; Bob, B.; Li, G.; Yang, Y., High-performance multiple-donor bulk heterojunction solar cells. Nature Photonics 2015, 9 (3), 190. 18. Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z., Conjugated polymer–small molecule alloy leads to high efficient ternary organic solar cells. Journal of the American Chemical Society 2015, 137 (25), 8176-8183. 19. Gasparini, N.; Jiao, X.; Heumueller, T.; Baran, D.; Matt, G. J.; Fladischer, S.; Spiecker, E.; Ade, H.; Brabec, C. J.; Ameri, T., Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nature Energy 2016, 1 (9), 16118. 20. Zhong, L.; Gao, L.; Bin, H.; Hu, Q.; Zhang, Z. G.; Liu, F.; Russell, T. P.; Zhang, Z.; Li, Y., High efficiency ternary nonfullerene polymer solar cells with two polymer donors and an organic semiconductor acceptor. Advanced Energy Materials 2017, 7 (14). 21. Cheng, P.; Yan, C.; Wu, Y.; Wang, J.; Qin, M.; An, Q.; Cao, J.; Huo, L.; Zhang, F.; Ding, L., Alloy acceptor: superior alternative to PCBM toward efficient and stable organic solar cells. Advanced Materials 2016, 28 (36), 8021-8028. 22. Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M., Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature materials 2017, 16 (3), 363. 23. Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J., Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Advanced Materials 2017, 29 (2). 24. Jankovic, V.; Yang, Y.; You, J.; Dou, L.; Liu, Y.; Cheung, P.; Chang, J. P.; Yang, Y., Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS nano 2013, 7 (5), 3815-3822. 25. Lee, J. M.; Kwon, B. H.; Park, H. I.; Kim, H.; Kim, M. G.; Park, J. S.; Kim, E. S.; Yoo, S.; Jeon, D. Y.; Kim, S. O., Exciton Dissociation and Charge‐Transport Enhancement in Organic Solar Cells with Quantum‐Dot/N‐doped CNT Hybrid Nanomaterials. Advanced Materials 2013, 25 (14), 2011-2017. 26. Kim, H.; Kim, J.; Ryu, J.; Kim, Y., HJ Kim, JH Kim, JH Ryu, Y. Kim, H. Kang, WB Lee, TS Kim, and BJ Kim, Acs Nano 8, 10461 (2014). Acs Nano 2014, 8, 10461. 27. Cheng, P.; Zhang, M.; Lau, T. K.; Wu, Y.; Jia, B.; Wang, J.; Yan, C.; Qin, M.; Lu, X.; Zhan, X., Realizing Small Energy Loss of 0.55 eV, High Open‐Circuit Voltage> 1 V and High Efficiency> 10% in Fullerene‐Free Polymer Solar Cells via Energy Driver. Advanced Materials 2017, 29 (11). 28. Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency. Advanced materials 2006, 18 (6), 789-794. 29. Zhao, Y.; Xie, Z.; Qu, Y.; Geng, Y.; Wang, L., Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency. Synthetic Metals 2008, 158 (21-24), 908-911. 30. Ho, C. H. Y.; Cao, H.; Lu, Y.; Lau, T.-K.; Cheung, S. H.; Li, H.-W.; Yin, H.; Chiu, K. L.; Ma, L.-K.; Cheng, Y., Boosting the photovoltaic thermal stability of fullerene bulk heterojunction solar cells through charge transfer interactions. Journal of Materials Chemistry A 2017, 5 (45), 23662-23670. 31. Hung, K.-E.; Tsai, C.-E.; Chang, S.-L.; Lai, Y.-Y.; Jeng, U.-S.; Cao, F.-Y.; Hsu, C.-S.; Su, C.-J.; Cheng, Y.-J., Bispentafluorophenyl-Containing Additive: Enhancing Efficiency and Morphological Stability of Polymer Solar Cells via Hand-Grabbing-Like Supramolecular Pentafluorophenyl–Fullerene Interactions. ACS applied materials & interfaces 2017, 9 (50), 43861-43870. 32. Xiao, M.; Zhang, K.; Jin, Y.; Yin, Q.; Zhong, W.; Huang, F.; Cao, Y., Low temperature processed high-performance thick film ternary polymer solar cell with enhanced stability. Nano Energy 2018, 48, 53-62. 33. Li, M.; Liu, Y.; Ni, W.; Liu, F.; Feng, H.; Zhang, Y.; Liu, T.; Zhang, H.; Wan, X.; Kan, B., A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. Journal of Materials Chemistry A 2016, 4 (27), 10409-10413. 34. Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z., Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency> 10%. Advanced Materials 2016, 28 (45), 10008-10015. 35. Xu, X.; Bi, Z.; Ma, W.; Wang, Z.; Choy, W. C.; Wu, W.; Zhang, G.; Li, Y.; Peng, Q., Highly Efficient Ternary‐Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance. Advanced Materials 2017, 29 (46). 36. Jiang, W.; Yu, R.; Liu, Z.; Peng, R.; Mi, D.; Hong, L.; Wei, Q.; Hou, J.; Kuang, Y.; Ge, Z., Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. Advanced Materials 2018, 30 (1). 37. Wu, H. C.; Lai, Y. C.; Chiu, Y. C.; Lee, W. Y.; Chen, W. C., Syntheses of Biaxially Extended Octithiophene‐Based Conjugated Copolymers for High‐Open‐Circuit‐Voltage Photovoltaic‐Cell Applications. Macromolecular Chemistry and Physics 2014, 215 (7), 638-647. 38. Lee, C.; Kang, H.; Lee, W.; Kim, T.; Kim, K. H.; Woo, H. Y.; Wang, C.; Kim, B. J., High‐Performance All‐Polymer Solar Cells Via Side‐Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology. Advanced materials 2015, 27 (15), 2466-2471. 39. Lin, H.-W.; Lee, W.-Y.; Lu, C.; Lin, C.-J.; Wu, H.-C.; Lin, Y.-W.; Ahn, B.; Rho, Y.; Ree, M.; Chen, W.-C., Biaxially extended quaterthiophene-thiophene and-selenophene conjugated polymers for optoelectronic device applications. Polymer Chemistry 2012, 3 (3), 767-777. 40. Cnops, K.; Rand, B. P.; Cheyns, D.; Verreet, B.; Empl, M. A.; Heremans, P., 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nature communications 2014, 5, 3406. 41. Wan, Q.; Guo, X.; Wang, Z.; Li, W.; Guo, B.; Ma, W.; Zhang, M.; Li, Y., 10.8% efficiency polymer solar cells based on PTB7‐Th and PC71BM via binary solvent additives treatment. Advanced Functional Materials 2016, 26 (36), 6635-6640. 42. Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J., Fullerene‐free polymer solar cells with over 11% efficiency and excellent thermal stability. Advanced Materials 2016, 28 (23), 4734-4739. 43. Yang, L.; Zhou, H.; Price, S. C.; You, W., Parallel-like bulk heterojunction polymer solar cells. Journal of the American Chemical Society 2012, 134 (12), 5432-5435. 44. Ma, Y.; Zhang, M.; Yan, Y.; Xin, J.; Wang, T.; Ma, W.; Tang, C.; Zheng, Q., Ladder-Type Dithienonaphthalene-Based Small-Molecule Acceptors for Efficient Nonfullerene Organic Solar Cells. Chemistry of Materials 2017, 29 (18), 7942-7952. 45. Chang, S.-L.; Cao, F.-Y.; Huang, W.-C.; Huang, P.-K.; Hsu, C.-S.; Cheng, Y.-J., Highly efficient inverted D: A1: A2 ternary blend organic photovoltaics combining a ladder-type non-fullerene acceptor and a fullerene acceptor. ACS applied materials & interfaces 2017, 9 (29), 24797-24803. 46. Huang, W.; Gann, E.; Thomsen, L.; Dong, C.; Cheng, Y. B.; McNeill, C. R., Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTT‐EFT. Advanced Energy Materials 2015, 5 (7). 47. Hammond, M. R.; Kline, R. J.; Herzing, A. A.; Richter, L. J.; Germack, D. S.; Ro, H.-W.; Soles, C. L.; Fischer, D. A.; Xu, T.; Yu, L., Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. Acs Nano 2011, 5 (10), 8248-8257. 48. Bi, P.; Xiao, T.; Yang, X.; Niu, M.; Wen, Z.; Zhang, K.; Qin, W.; So, S. K.; Lu, G.; Hao, X., Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells. Nano energy 2018, 46, 81-90. 49. Son, H. J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L., Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. Journal of the American Chemical Society 2011, 133 (6), 1885-1894. 50. Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L., Study on the surface energy of graphene by contact angle measurements. Langmuir 2014, 30 (28), 8598-8606. 51. Williams, S. T.; Rajagopal, A.; Chueh, C.-C.; Jen, A. K. Y., Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics. The Journal of Physical Chemistry Letters 2016, 7 (5), 811-819. 52. Green, M. A.; Ho-Baillie, A., Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters 2017, 2 (4), 822-830. 53. Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Gratzel, M.; Hagfeldt, A., The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science 2017, 10 (3), 710-727. 54. Albrecht, S.; Rech, B., Perovskite solar cells: On top of commercial photovoltaics. Nature Energy 2017, 2, 16196. 55. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>. Science 2013, 342 (6156), 344-347. 56. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354 (6309), 206-209. 57. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356 (6345), 1376-1379. 58. Tress, W., Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open-Circuit Voltage and Low Recombination. Advanced Energy Materials 2017, 7 (14), 1602358n/a-n/a. 59. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237. 60. Zuo, C.; Bolink, H. J.; Han, H.; Huang, J.; Cahen, D.; Ding, L., Advances in Perovskite Solar Cells. Advanced Science 2016, 3 (7), n/a-n/a1500324. 61. Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350 (6263), 944-948. 62. Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M., A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353 (6294), 58-62. 63. Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Grätzel, M.; Han, L., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92. 64. Bella, F.; Griffini, G.; Correa-Baena, J.-P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 2016. 65. Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; Fan, F.; Li, P.; Quan, L. N.; Zhao, Y.; Lu, Z.-H.; Yang, Z.; Hoogland, S.; Sargent, E. H., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355 (6326), 722-726. 66. Tiep, N. H.; Ku, Z.; Fan, H. J., Recent Advances in Improving the Stability of Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (3), n/a-n/a501420. 67. Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, M. K., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications 2017, 8, 15684. 68. Park, N.-G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K., Towards stable and commercially available perovskite solar cells. Nature Energy 2016, 1, 16152. 69. Chueh, C.-C.; Li, C.-Z.; Jen, A. K. Y., Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy & Environmental Science 2015, 8 (4), 1160-1189. 70. Fan, R.; Huang, Y.; Wang, L.; Li, L.; Zheng, G.; Zhou, H., The Progress of Interface Design in Perovskite-Based Solar Cells. Advanced Energy Materials 2016, 6 (17), n/a-n/a1600460. 71. Bai, Y.; Meng, X.; Yang, S., Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (5), n/a-n/a701883. 72. Deng, W.; Liang, X.; Kubiak, P. S.; Cameron, P. J., Molecular Interlayers in Hybrid Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (1), 1n/a-n/a701554. 73. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345 (6194), 295-298. 74. Aitola, K.; Domanski, K.; Correa-Baena, J.-P.; Sveinbjörnsson, K.; Saliba, M.; Abate, A.; Grätzel, M.; Kauppinen, E.; Johansson, E. M. J.; Tress, W.; Hagfeldt, A.; Boschloo, G., High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact. Advanced Materials 2017, 29 (17), 1n/a-n/a606398. 75. Yang, S.; Wang, Y.; Liu, P.; Cheng, Y.-B.; Zhao, H. J.; Yang, H. G., Functionalization of perovskite thin films with moisture-tolerant molecules. Nature Energy 2016, 1, 15016. 76. Yu, Z.; Sun, L., Recent Progress on Hole-Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Advanced Energy Materials 2015, 5 (12), n/a-n/a1500213. 77. Li, Z. a.; Zhu, Z.; Chueh, C.-C.; Luo, J.; Jen, A. K. Y., Facile Thiol-Ene Thermal Crosslinking Reaction Facilitated Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (21), n/a-n/a1601165. 78. Bai, Y.; Dong, Q.; Shao, Y.; Deng, Y.; Wang, Q.; Shen, L.; Wang, D.; Wei, W.; Huang, J., Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nature Communications 2016, 7, 12806. 79. Zhu, Z.; Zhao, D.; Chueh, C.-C.; Shi, X.; Li, Z.; Jen, A. K. Y., Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule 2018, 2 (1), 168-183. 80. Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature Communications 2015, 6, 7747. 81. Xu, T.; Chen, L.; Guo, Z.; Ma, T., Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Physical Chemistry Chemical Physics 2016, 18 (39), 27026-27050. 82. Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J., Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science 2016, 9 (2), 323-356. 83. Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy & Environmental Science 2016, 9 (5), 1655-1660. 84. Shin, S. S.; Yeom, E. J.; Yang, W. S.; Hur, S.; Kim, M. G.; Im, J.; Seo, J.; Noh, J. H.; Seok, S. I., Colloidally prepared La-doped BaSnO3<sub>3</sub> electrodes for efficient, photostable perovskite solar cells. Science 2017, 356 (6334), 167-171. 85. Jiang, L.; Chen, W.; Zheng, J.; Zhu, L.; Mo, L. e.; Li, Z.; Hu, L.; Hayat, T.; Alsaedi, A.; Zhang, C.; Dai, S., Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex. ACS Applied Materials & Interfaces 2017, 9 (32), 26958-26964. 86. Wang, Q.; Zhang, X.; Jin, Z.; Zhang, J.; Gao, Z.; Li, Y.; Liu, S. F., Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells. ACS Energy Letters 2017, 2 (7), 1479-1486. 87. Chen, C.; Li, H.; Jin, J.; Chen, X.; Cheng, Y.; Zheng, Y.; Liu, D.; Xu, L.; Song, H.; Dai, Q., Long-Lasting Nanophosphors Applied to UV-Resistant and Energy Storage Perovskite Solar Cells. Advanced Energy Materials 2017, 7 (20), 1700758n/a-n/a. 88. Zhang, H.; Wang, H.; Zhu, H.; Chueh, C.-C.; Chen, W.; Yang, S.; Jen, A. K. Y., Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Advanced Energy Materials, 1702762n/a-n/a. 89. Wu, H.-C.; Lai, Y.-C.; Chiu, Y.-C.; Lee, W.-Y.; Chen, W.-C., Syntheses of Biaxially Extended Octithiophene-Based Conjugated Copolymers for High-Open-Circuit-Voltage Photovoltaic-Cell Applications. Macromolecular Chemistry and Physics 2014, 215 (7), 638-647. 90. Wu, H.-C.; Hong, C.-W.; Chen, W.-C., Biaxially extended thiophene-isoindigo donor-acceptor conjugated polymers for high-performance flexible field-effect transistors. Polymer Chemistry 2016, 7 (26), 4378-4392. 91. Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J.-P.; Decoppet, J.-D.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances 2016, 2 (1). 92. Li, Z. a.; Zhu, Z.; Chueh, C. C.; Luo, J.; Jen, A. K. Y., Facile Thiol‐Ene Thermal Crosslinking Reaction Facilitated Hole‐Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (21), 1601165. 93. Zhu, Z.; Zhao, D.; Chueh, C.-C.; Shi, X.; Li, Z.; Jen, A. K.-Y., Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule 2018, 2 (1), 168-183. 94. Zhang, H.; Wang, H.; Zhu, H.; Chueh, C. C.; Chen, W.; Yang, S.; Jen, A. K. Y., Low‐Temperature Solution‐Processed CuCrO2 Hole‐Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (13), 1702762. 95. Tvingstedt, K.; Gil-Escrig, L.; Momblona, C.; Rieder, P.; Kiermasch, D.; Sessolo, M.; Baumann, A.; Bolink, H. J.; Dyakonov, V., Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells. ACS Energy Letters 2017, 2 (2), 424-430. 96. Will, J.; Hou, Y.; Scheiner, S.; Pinkert, U.; Hermes, I. M.; Weber, S. A. L.; Hirsch, A.; Halik, M.; Brabec, C.; Unruh, T., Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer. ACS Applied Materials & Interfaces 2018, 10 (6), 5511-5518. 97. Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I., Efficient Inorganic–Organic Hybrid Perovskite Solar Cells Based on Pyrene Arylamine Derivatives as Hole-Transporting Materials. Journal of the American Chemical Society 2013, 135 (51), 19087-19090. 98. Rakstys, K.; Abate, A.; Dar, M. I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad, S.; Grätzel, M.; Nazeeruddin, M. K., Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (51), 16172-16178. 99. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; Losovyj, Y.; Zhang, X.; Dowben, P. A.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347 (6221), 519-522. 100. Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, Xiao C.; Huang, J., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nature Energy 2017, 2, 17102. 101. Wang, Q.; Chueh, C.-C.; Eslamian, M.; Jen, A. K. Y., Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. ACS Applied Materials & Interfaces 2016, 8 (46), 32068-32076. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71189 | - |
dc.description.abstract | 在近年的溶液製成太陽能電池研究中,為了使有機太陽能電池能夠在全光譜吸收範圍都能有更寬廣的吸收範圍,不僅使用可吸收紅光波段的小分子作為受體外,更希望能增加近紫外光波長區域的吸收得到全光譜吸收的有機太陽能電池。因此,我們設計寬能隙(Eg)高分子的八噻吩雙軸共軛性高分子(8T-based polymers)。藉由在高分子主鏈上引入由龐大且共軛的噻吩側鏈與共軛結構上的π-π 效應,除了原本主鏈結構於可見光波段之吸收外,可於近紫外光波長區間產生一造成與高分子主結構上有載子轉移作用,因而有很強的近紫外光波長的吸收特性。藉由此一特性,我們將此一系列高分子摻入有機太陽能電池主動層內作為第三成分的活性施子體,並成功分別於富勒烯/非富勒烯體系的有機太陽能電池中提升7.58%與/6.6%的光轉換效率於富勒烯/非富勒烯體系的有機太陽能電池。
有鑒於龐大的噻吩側鏈造成近紫外光高吸收特性,我們更進一步設計具有施體與受體的八噻吩共聚物以便提升其高分子的載子移動率,並在鈣鈦礦太陽能電池中作為電洞傳輸層與紫外光過濾層。在鈣鈦礦太陽能電池中,具有最高載子移動率的八噻吩共軛性高分子作為電洞傳輸層下,能有效提升電池於紫外光下之穩定性且得到最高轉換效率18.34%。本研究中,不僅成功提升有機與鈣鈦礦太陽能電池的表現,也同時仔細針對共軛性高分子的光電特性做分析。 | zh_TW |
dc.description.abstract | In recent researches of solution-processed solar cells, utilization of conjugated polymers owning intense ultra-violet (UV) spectrum absorption are rarely studied while the UV light-harvesting is not fully still weakharvested in OPVs and it should be filtered for perovskite solar cells (PVSCs). Herein, we have developed wide band-gap (Eg) polymers based on biaxially-extended octithiophene-based conjugated structures. Owing to the π-π* transition of the conjugated biaxially-extended side-chains, such polymers exhibit intense absorption in the near-ultraviolet region in addition to the original intra-charge transfer (ICT) feature arising from the main backbone. ByThe rationally tailoring the backbone structures 8T-based polymers, they can deliver 7.58%- and 6.60% -enhancement ind PCEs for the representative fullerene-/non-fullerene-based BHJ OPVs, respectively.
Thanks to the bearing bulky side-chain group of these 8T-base polymers, such 8T-based polymersthey provided complementary intense UV absorption and canin OPVs while D-A 8T-based copolymers functioned as a UV-filtering layer in the PVSCs. In view of this, we demonstrated that such 8T-based polymers can not only serve as an active third component to the binary bulk-heterojunction systems (BHJs) in OPVs Hence, we further explored the function of such polymers but alsoin serveing as an HTL in PVSCs to filter the UV-radiation. We firstWe introducede isoindigo moietyes into the polymer backbone to prepare with thiophene in backbone which is a D-A type copolymers with higherimproved mobility than original 8T-based polymers. Finally, Thanks to the bearing bulky side-chain group of these 8T-base polymers, such 8T-based polymers provided complementary intense UV absorption in OPVs while D-A 8T-based copolymers functioned as a UV-filtering layer in the PVSCs. While a high-performance (PCE: 18.34%) PVSC were realized along with a much improved UV-photostability was realized while using the highest charge mobility of 8T-based polymer as the HTL. In this thesis, we have successfully employed novel biaxially-extended octithiophene-based conjugated polymers as a third active component to developed high- performance OPVssolar cells and as HTL to realize efficient and high UV-stableresistant ability in perovskite solar cells ( PVSCs) by using a novel structural design, biaxially-extended octithiophene-based conjugated polymers as third component and hole-transporting layer (HTL) in organic photovoltaic (OPVs) and PVSCs respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:57:40Z (GMT). No. of bitstreams: 1 ntu-107-R05524068-1.pdf: 11311973 bytes, checksum: 1270a3f27b2c37a46338e8c4302f9012 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV Contents VI Chapter 1 1 Introduction 1 1-1 Introduction to photovoltaics 1 1-1-1 Organic photovoltaics (OPVs) 2 1-1-2 Device structure of OPVs 2 1-1-3 Perovskite solar cells 4 1-1-4 Principle operation 5 1-1-5 Characterization of photovoltaics 5 1-1-6 Research objectives 8 Chapter2 12 High-performance ternary polymer solar cells using wide-bandgap biaxially extended octithiophene-based conjugated polymers 12 2-1 Introduction 12 2-2 Experiment section 16 2-2-1 Materials 16 2-2-2 OPVs device fabrication and characterization 16 2-2-3 Morphological characterization 18 2-3 Result and discussion 18 2-3-1 Optical properties of the ternary BHJs using 8T-based polymers 18 2-3-2 Electrical and photoluminescence analyses 20 2-3-3 Performance of solar cells 23 2-3-4 Charge recombination of the devices 25 2-3-5. Morphology of the BHJs 27 2-4 Conclusion 30 Chapter3 41 Efficient and UV-Stable Perovskite Solar Cells Enabled by Side Chain-Engineered Polymeric Hole-Transporting Layers 41 3-1 Introduction 41 3-2 Experimental section 45 3-2-1 Materials 45 3-2-2 PVSCs fabrication and characterization 46 3-3 Results and discussion 48 3-3-1 Optoelectronic properties of 8T-based polymers 48 3-3-2 Crystal and surface morphology of perovskite 51 3-3-3 Steady-state and time-resolved photoluminescence of perovskite 52 3-3-4 Performance of 8T-based polymers as HTL in PVSCs 54 3-3-5 UV-photostability test of PVSCs 57 Chapter 4 71 Conclusion and future work 71 References 73 Publication Lists 83 | |
dc.language.iso | en | |
dc.title | 八噻吩雙軸共軛高分子於有機與有機無機混成鈣鈦礦太陽能電池之應用 | zh_TW |
dc.title | Applications of Biaxially-Extended Octithiophene
based Conjugated Polymers in Polymer and Organic-Inorganic Hybrid Perovskite Solar Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李文亞(Wen-Ya Lee),陳協志(Hsieh-Chih Chen) | |
dc.subject.keyword | 有機太陽能電池,鈣鈦礦電池,三成份主動層,寬能隙,八?吩,紫外光曝照穩定性, | zh_TW |
dc.subject.keyword | OPVs,PVSCs,ternary BHJ,wide band-gap,octithiophene,UV-photostability, | en |
dc.relation.page | 98 | |
dc.identifier.doi | 10.6342/NTU201801988 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 11.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。