Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖(Chi-Sheng Wu)
dc.contributor.authorCheng-Hung Leeen
dc.contributor.author李政泓zh_TW
dc.date.accessioned2021-06-17T04:57:37Z-
dc.date.available2018-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-07-26
dc.identifier.citationREFERENCE
1. 林昀輝, 盧文章, 李宏台, 生質酒精之生產與應用. 生物技術與綠色農業研討
會會刊, (2006) 57-65.
2. 毛慶豐, 環境友善的材料─生質高分子. 科學發展, (2013)
3. M. M. Y. Chang, J.-C. Shieh and S.-M. Wang, Conversion of Ethanol Broth to LPG
and Gasoline. 2012.
4. J. Preston, High-Strength, High-Modulus Fibers Made From Liner Polyners: Principles of Fabrication, Structure, Properties, and Use. Fibre Chemistry, 42(2010) 129-142.
5. P.-C. Lai, C.-H. Chen, H.-Y. Hsu, C.-H. Lee and Y.-C. Lin, Methanol aromatization
over Ga-doped desilicated HZSM-5. RSC Advances, 6 (2016) 67361-67371.
6. Z. Li, A. W. Lepore, M. F. Salazar, G. S. Foo, B. H. Davison, Z. Wu and C. K. Narula, Selective conversion of bio-derived ethanol to renewable BTX over Ga-ZSM-5. Green Chemistry, 19 (2017) 4344-4352.
7. H. Wan and P. Chitta, Catalytic conversion of propane to BTX over Ga, Zn, Mo, and Re impregnated ZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 121 (2016) 369-375.
8. G. Iaquaniello, G. Centi, A. Salladini and E. Palo, Chapter 22 - Methanol Economy:Environment, Demand, and Marketing With a Focus on the Waste-to-Methanol Process A2 - Basile, Angelo, in Methanol, F. Dalena, Editor. 2018, Elsevier. 595-612.
9. B. Cañete, C. E. Gigola and N. B. Brignole, Synthesis Gas Processes for Methanol Production via CH4 Reforming with CO2, H2O, and O2. Industrial & Engineering Chemistry Research, 53 (2014) 7103-7112.
10. F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff and J. K. Nørskov, Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry, 6 (2014) 320.
11. C. D. Chang, Hydrocarbons from Methanol. Catalysis Reviews, 25 (1983) 1-118.
12. C. D. Chang and A. J. Silvestri, The conversion of methanol and other
O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 47 (1977) 249-259.
13. C. D. Chang, Methanol-to-Gasoline Process-Reaction Mechanism. American Chemical Society, (1988) Chapter 39, 596–614.
14. Z. Liu and J. Liang, Methanol to olefin conversion catalysts. Current Opinion in Solid State and Materials Science, 4 (1999) 80-84.
15. J. Ahmadpour and M. Taghizadeh, Catalytic conversion of methanol to propylene over high-silica mesoporous ZSM-5 zeolites prepared by different combinations of mesogenous templates. Journal of Natural Gas Science and Engineering, 23 (2015) 184-194.
16. H. Chen, Y. Wang, F. Meng, H. Li, S. Wang, C. Sun, S. Wang and X. Wang, Conversion of methanol to propylene over nano-sized ZSM-5 zeolite aggregates synthesized by a modified seed-induced method with CTAB. RSC Advances, 6 (2016) 76642-76651.
17. S. Ilias and A. Bhan, Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons. ACS Catalysis, 3 (2013) 18-31.
18. L. Zhang, Z.-X. Jiang, Y. Yu, C.-S. Sun, Y.-J. Wang and H.-Y. Wang, Synthesis of core-shell ZSM-5@meso-SAPO-34 composite and its application in methanol to aromatics. RSC Advances, 5 (2015) 55825-55831.
19. J. Zhang, W. Qian, C. Kong and F. Wei, Increasing para-Xylene Selectivity in Making Aromatics from Methanol with a Surface-Modified Zn/P/ZSM-5 Catalyst. ACS Catalysis, 5 (2015) 2982-2988.
20. J. Sun and Y. Wang, Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catalysis, 4 (2014) 1078-1090.
21. K. Van der Borght, V. V. Galvita and G. B. Marin, Ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content. Applied Catalysis A: General, 492 (2015) 117-126.
22. I. Masakazu, K. Kouji and H. Teruki, Conversion of Ethanol into Polyolefin Building Blocks: Reaction Pathways on Nickel Ion‐loaded Mesoporous Silica. ChemSusChem, 4 (2011) 1055-1058.
23. J. Preston, HIGH-STRENGTH, HIGH-MODULUS FIBRES MADE FROM LINEAR POLYMERS: PRINCIPLES OF FABRICATION, STRUCTURE, PROPERTIES, AND USE. Fibre Chemistry, 42 (2010) 129-142.
24. B. S. M. Bender, Ludwigshafen, Germany, Global Aromatics Supply - Today and Tomorrow. New Technologies and Alternative Feedstocks in Petrochemistry and Refining, (2013)
25. S. J. Phil Wynn Owen, Jerneja Vrabic, Roussalia Nikolova, Anžela Poliulianaitė, Maria Eulàlia Reverté i Casas, Frédéric Soblet, Pekka Ulander and Jolanta Žemailaitė, Renewable energy for sustainable rural development: significant potential synergies, but mostly unrealised. EUROPEAN COURT OF AUDITORS, 5 (2018)
26. 張揚狀, 21世紀能源革命 ─生質能. 科學發展, 520期 (2016)
27. M. F. Demirbas, M. Balat and H. Balat, Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50 (2009) 1746-1760.
28. H. Zabed, J. N. Sahu, A. Suely, A. N. Boyce and G. Faruq, Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71 (2017) 475-501.
29. 林畢修, 陳建孝, 纖維酒精製程簡介與未來展望. 永續產業發展雙月刊, 35期 (2007)
30. M. Vohra, J. Manwar, R. Manmode, S. Padgilwar and S. Patil, Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2 (2014) 573-584.
31. F. S. I. I. NPTEL, FCC Cracking, Catalyst coking and regeneration, Design concepts, New Designs for Fluidized-Bed Catalytic Cracking Units.
32. M. Hara, K. Nakajima and K. Kamata, Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Science and technology of advanced materials, 16 (2015) 034903.
33. S. Yanping and T. C. Brown, Kinetics of isobutane dehydrogenation and cracking over HZSM-5 at low pressures. Journal of Catalysis, 194 (2000) 301-308.
34. J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbach, R. F. Lobo and G. W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 279 (2011) 257-268.
35. X.-g. Lei, S. Jockusch, M. F. Ottaviani and N. J. Turro, In situ EPR investigation of the addition of persistent benzyl radicals to acrylates on ZSM-5 zeolites. Direct spectroscopic detection of the initial steps in a supramolecular photopolymerization. Photochemical & Photobiological Sciences, 2 (2003) 1095-1100.
36. P.-P. E. de Moor, T. P. Beelen and R. A. van Santen, In situ observation of nucleation and crystal growth in zeolite synthesis. A small-angle X-ray scattering investigation on Si-TPA-MFI. The Journal of Physical Chemistry B, 103 (1999) 1639-1650.
37. S. Sang, F. Chang, Z. Liu, C. He, Y. He and L. Xu, Difference of ZSM-5 zeolites synthesized with various templates. Catalysis Today, 93 (2004) 729-734.
38. T. Ma, L. Zhang, Y. Song, Y. Shang, Y. Zhai and Y. Gong, A comparative synthesis of ZSM-5 with ethanol or TPABr template: distinction of Brønsted/Lewis acidity ratio and its impact on n-hexane cracking. Catalysis Science & Technology, 8 (2018) 1923-1935.
39. M. Rilyanti, R. R. Mukti, G. T. Kadja, M. Ogura, H. Nur and E.-P. Ng, On the drastic reduction of organic structure directing agent in the steam-assisted crystallization of zeolite with hierarchical porosity. Microporous and Mesoporous Materials, 230 (2016) 30-38.
40. N. Ren, Z.-J. Yang, X.-C. Lv, J. Shi, Y.-H. Zhang and Y. Tang, A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology. Microporous and Mesoporous Materials, 131 (2010) 103-114.
41. H. Zhang, Y. Zhao, H. Zhang, P. Wang, Z. Shi, J. Mao, Y. Zhang and Y. Tang, Tailoring Zeolite ZSM‐5 Crystal Morphology/Porosity through Flexible Utilization of Silicalite‐1 Seeds as Templates: Unusual Crystallization Pathways in a Heterogeneous System. Chemistry-A European Journal, 22 (2016) 7141-7151.
42. C. K. Narula, Z. Li, E. M. Casbeer, R. A. Geiger, M. Moses-Debusk, M. Keller, M. V. Buchanan and B. H. Davison, Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons. Scientific reports, 5 (2015) 16039.
43. T. Kito-Borsa and S. Cowley, Kinetics, Characterization and Mechanism for the Selective Dehydration of Ethanol to Diethyl Ether over Solid Acid Catalysts. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, 49 (2004) 856.
44. J. N. Kondo, K. Ito, E. Yoda, F. Wakabayashi and K. Domen, An ethoxy intermediate in ethanol dehydration on Brønsted acid sites in zeolite. The Journal of Physical Chemistry B, 109 (2005) 10969-10972.
45. M. Inaba, K. Murata, M. Saito and I. Takahara, Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts Reaction Kinetics and Catalysis Letters, 88 (2006) 135-141.
46. M. Inaba, K. Murata and I. Takahara, Effect of Fe-loading and reaction temperature on the production of olefins from ethanol by Fe/H-ZSM-5 zeolite catalysts. Reaction Kinetics and Catalysis Letters, 97 (2009) 19-26.
47. K. K. Ramasamy and Y. Wang, Ethanol conversion to hydrocarbons on HZSM-5: Effect of reaction conditions and Si/Al ratio on the product distributions. Catalysis Today, 237 (2014) 89-99.
48. Y. Furumoto, Y. Harada, N. Tsunoji, A. Takahashi, T. Fujitani, Y. Ide, M. Sadakane and T. Sano, Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General, 399 (2011) 262-267.
49. F. F. Madeira, N. S. Gnep, P. Magnoux, H. Vezin, S. Maury and N. Cadran, Mechanistic insights on the ethanol transformation into hydrocarbons over HZSM-5 zeolite. Chemical Engineering Journal, 161 (2010) 403-408.
50. C. P. Nash, A. Ramanathan, D. A. Ruddy, M. Behl, E. Gjersing, M. Griffin, H. Zhu, B. Subramaniam, J. A. Schaidle and J. E. Hensley, Mixed alcohol dehydration over Brønsted and Lewis acidic catalysts. Applied Catalysis A: General, 510 (2016) 110-124.
51. D. M. Alonso, J. Q. Bond and J. A. Dumesic, Catalytic conversion of biomass to biofuels. Green Chemistry, 12 (2010) 1493-1513.
52. A. G. Gayubo, A. Alonso, B. Valle, A. T. Aguayo, M. Olazar and J. Bilbao, Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable Ni–HZSM-5 catalyst considering the deactivation by coke. Chemical engineering journal, 167 (2011) 262-277.
53. E. Costa, A. Uguina, J. Aguado and P. J. Hernandez, Ethanol to gasoline process: effect of variables, mechanism, and kinetics. Industrial & Engineering Chemistry Process Design and Development, 24 (1985) 239-244.
54. S.-L. ZHANG, B. LI, F.-Y. ZHANG, L. MA, Y.-H. HAN and M.-G. FAN, Aromatization of ethanol over metal modified P/HZSM-5 zeolite. Acta Physico-Chimica Sinica, 27 (2011) 1501-1508.
55. N. Viswanadham, S. K. Saxena, J. Kumar, P. Sreenivasulu and D. Nandan, Catalytic performance of nano crystalline H-ZSM-5 in ethanol to gasoline (ETG) reaction. Fuel, 95 (2012) 298-304.
56. A. Chistyakov, M. Gubanov, V. Y. Murzin, P. Zharova, M. Tsodikov, V. Kriventsov, A. Gekhman and I. Moiseev, Conversion of ethanol into hydrocarbon components of fuels in the presence of Pd-Zn-containing catalysts. Russian Chemical Bulletin, 63 (2014) 88-93.
57. Y. Ni, W. Peng, A. Sun, W. Mo, J. Hu, T. Li and G. Li, High selective and stable performance of catalytic aromatization of alcohols and ethers over La/Zn/HZSM-5 catalysts. Journal of Industrial and Engineering Chemistry, 16 (2010) 503-505.
58. W. Xia, F. Wang, X. Mu, K. Chen, A. Takahashi, I. Nakamura and T. Fujitani, Highly selective catalytic conversion of ethanol to propylene over yttrium-modified zirconia catalyst. Catalysis Communications, 90 (2017) 10-13.
59. A. G. Gayubo, A. Alonso, B. Valle, A. T. Aguayo, M. Olazar and J. Bilbao, Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons. Fuel, 89 (2010) 3365-3372.
60. M. Inaba, K. Murata, I. Takahara and K. i. Inoue, Production of olefins from ethanol by Fe and/or P‐modified H‐ZSM‐5 zeolite catalysts. Journal of chemical technology and biotechnology, 86 (2011) 95-104.
61. Y. Tao, H. Kanoh and K. Kaneko, Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites. Adsorption, 12 (2006) 309-316.
62. A. G. Gayubo, A. Alonso, B. Valle, A. T. Aguayo and J. Bilbao, Kinetic model for the transformation of bioethanol into olefins over a HZSM-5 zeolite treated with alkali. Industrial & Engineering Chemistry Research, 49 (2010) 10836-10844.
63. Q. Sheng, S. Guo, K. Ling and L. Zhao, Catalytic dehydration of ethanol to ethylene over alkali-treated HZSM-5 zeolites. Journal of the Brazilian Chemical Society, 25 (2014) 1365-1371.
64. A. G. Gayubo, A. Alonso, B. Valle, A. T. Aguayo and J. Bilbao, Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH. Applied Catalysis B: Environmental, 97 (2010) 299-306.
65. Z. Wei, T. Xia, M. Liu, Q. Cao, Y. Xu, K. Zhu and X. Zhu, Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 9 (2015) 450-460.
66. X. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin and J. Wang, Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics. Fuel Processing Technology, 157 (2017) 99-107.
67. S. K. Saxena and N. Viswanadham, Hierarchically nano porous nano crystalline ZSM-5 for improved alkylation of benzene with bio-ethanol. Applied Materials Today, 5 (2016) 25-32.
68. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki and R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461 (2009) 246.
69. S. Chu, X. Guo, J. Li, J. Bai, X. Mu and L.-n. Yang, Synthesis of Ga2O3/HZSM-5@ cubic ordered mesoporous SiO2 with template Pluronic F127 to improve its catalytic performance in the aromatization of methanol. Journal of Porous Materials, 24 (2017) 1069-1078.
70. R. Cataluña, R. d. Silva, E. W. Menezes and D. Samios, Thermal conductivity of gas by pulse injection techniques using specific thermal conductivity detector (TCD). Journal of the Brazilian Chemical Society, 15 (2004) 839-843.
71. S. Zimmermann, P. Krippner, A. Vogel and J. Müller, Miniaturized flame ionization detector for gas chromatography. Sensors and Actuators B: Chemical, 83 (2002) 285-289.
72. D. I. Hunt, Chapter 13: Spectroscopy., University of Calgary. Available from: URL: http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch13/ch13-ms.html#basics.
73. 林麗娟, X光繞射原理及其應用. 工業材料, (1994) 100-109.
74. S. Brunauer, P. H. Emmett and E. Teller, Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60 (1938) 309-319.
75. Y.-T. Cheng and G. W. Huber, Chemistry of furan conversion into aromatics and olefins over HZSM-5: a model biomass conversion reaction. ACS catalysis, 1 (2011) 611-628.
76. C. P. León, Vibrational spectroscopy of photosensitizer dyes for organic solar cells. Cuvillier Verlag, 2006, p.
77. M. Rehkämper, M. Schönbächler and C. H. Stirling, Multiple Collector ICP‐MS: Introduction to Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards and Geoanalytical Research, 25 (2001) 23-40.
78. D. K. Panda, Electron Probe Micro-Analyser: A Tool for Study of Planetary Materials. PLANEX, 1 (2011) 11-13.
79. A. Auroux, Calorimetry and thermal methods in catalysis. Springer, 2016, p.
80. R. W. Darbeau, Nuclear magnetic resonance (NMR) spectroscopy: a review and a look at its use as a probative tool in deamination chemistry. Applied Spectroscopy Reviews, 41 (2006) 401-425.
81. J. D. Roberts, Nuclear magnetic resonance spectroscopy. Journal of Chemical Education, 38 (1961) 581.
82. A. Zheng, S.-B. Liu and F. Deng, 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 117 (2017) 12475-12531.
83. W. Wu and E. Weitz, Modification of acid sites in ZSM-5 by ion-exchange: An in-situ FTIR study. Applied Surface Science, 316 (2014) 405-415.
84. T. Kim, G.-P. Kim, J. Jang, S. E. Shim, W.-S. Ahn and S.-H. Baeck, An investigation on the selective hydrodealkylation of C9+ aromatics over alkali-treated Pt/H-ZSM-5 zeolites. Catalysis Science & Technology, 6 (2016) 5599-5607.
85. F. Meng, Y. Wang and S. Wang, Methanol to gasoline over zeolite ZSM-5: improved catalyst performance by treatment with HF. RSC Advances, 6 (2016) 58586-58593.
86. Y. Ji, H. Yang and W. Yan, Strategies to Enhance the Catalytic Performance of ZSM-5 Zeolite in Hydrocarbon Cracking: A Review. Catalysts, 7 (2017) 367.
87. C. R. Bayense, A. P. Kentgens, J. W. De Haan, L. J. Van de Ven and J. H. Van Hooff, Determination of gallium in H (Ga) ZSM5 zeolites by gallium-71 MAS NMR spectroscopy. The Journal of Physical Chemistry, 96 (1992) 775-782.
88. P. Pal, J. Quartararo, S. B. Abd Hamid, E. G. Derouane, J. C. Védrine, P. C. Magusin and B. G. Anderson, A MAS NMR and DRIFT study of the Ga species in Ga/H-ZSM5 catalysts and their effect on propane ammoxidation. Canadian journal of chemistry, 83 (2005) 574-580.
89. I. A. Bakare, O. Muraza, M. Yoshioka, Z. H. Yamani and T. Yokoi, Conversion of methanol to olefins over Al-rich ZSM-5 modified with alkaline earth metal oxides. Catalysis Science & Technology, 6 (2016) 7852-7859.
90. H. R. Omran, S. M. El-Marsafy, F. H. Ashour and E. F. Abadir, Economic evaluation of aromatics production, a case study for financial model application in petrochemical projects. Egyptian Journal of Petroleum, 26 (2017) 855-863.
91. M. Bender, Global aromatics supply–today and tomorrow. Konferencja New Technologies and Alternative Feedstocks in Petrochemistry and Refining DGMK, Drezno, (2013)
92. R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes. Pearson Education, 2008
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71188-
dc.description.abstract近代科技及文明急速發展,化石燃料的蘊藏量只能夠讓我們再使用約半個世紀。因此,科學家們開始致力於發展替代性能源。在各種替代能源中,生質能源是目前最具發展性的,與其直接以能源形式使用外,進一步轉化為高經濟價值化合物已成為新的趨勢。生質能源中之發酵酒精在近年蓬勃發展,且眾多文獻證實可以透過ZSM-5沸石,將其轉化成高碳數的化合物,普渡大學的張馬丁教授在近年來提出含水的進料能夠促進該反應發生,因此直接使用生質酒精(酒精含量約為12wt.%)成為本研究之主要方向,以達成節省純化所需能源與零碳足跡的目標。
在酒精轉化之眾多產物中以芳香族產物具有最高的應用價值,因此本研究欲透過自行合成之ZSM-5找到最佳反應參數並且負載不同金屬以提升芳香族之產率,此反應我們稱之為Ethanol Broth to Aromatics (簡寫為EBTA)。
經過基本參數測試後,發現當矽鋁比為20,反應溫度為 400°C。時空流速為1.1 hr-1且進料濃度為72 wt.%可以得到最高之芳香族產率。接著,利用水熱合成法以及初濕含浸法負載不同比例之Ga以及Zn金屬,經過實驗結果與儀器分析鑑定,可以證實以水熱合成法負載Ga,與Al之莫耳比為3:1之沸石有最佳效果,該觸媒之Ga金屬分散性佳且強酸比例高,能將芳香族產率(莫耳比例)從0.23提升至0.42;因為電荷平衡因素,Zn金屬較適合使用初濕含浸法負載,且與Al之莫耳比為1:1時有較佳之效果,但因為強酸比例不如負載Ga之觸媒,產率(莫耳比例)僅從0.23稍微提升至0.26。
最後本研究使用核能研究所陳文華教授研究團隊商業化之生質酒精作為進料,並成功利用蒸發器與氣相層析儀控制氣相濃度維持在72 wt.%左右,總產物的芳香族產量略高於模擬生質酒精,其來源主要來自於萘的衍生物增加,至於苯、甲苯、二甲苯(BTX)產率則是相當近似。
zh_TW
dc.description.abstractThe technology is developing amazingly. Fossil fuel will be depleted in 50 years. Therefore, scientists are working on the development of renewable energy. Biomass is the most promising renewable energy source. In addition to using it to generate energy directly, many experts tried to convert it to more valuable compounds. In all kinds of biomass, bio-ethanol was widely used in recent years and lots of research indicated that it can be converted to long-chain hydrocarbons by ZSM-5 zeolite. Furthermore, Professor Martin Chang in Purdue University proposed that water content in reactant can enhance the ethanol conversion. Based on this concept, directly using bio-ethanol as reactant was the major objective of this research. The advantages are to save energy of purification and to achieve the goal of zero-carbon footprints.
Among the hydrocarbons from ethanol conversion, aromatics are most valuable compounds because of their diverse application. Hence, this research aims to enhance the aromatics yield by performing different reaction parameters and loading metal on ZSM-5 in two loading methods. We called this study as Ethanol Broth to Aromatics which can be abbreviated as EBTA.
After experiment studied by various parameters, the optimum reaction conditions that could get the highest aromatics yield were as following: Si/Al : 20, temperature: 400 °C, weight hourly space velocity: 1.1 hr-1, and the reactant concentration: 72 wt.%. The hydrothermal method and wet incipient impregnation method were used to load different amount of gallium and zinc on ZSM-5. From experiment results and catalysts characterization, gallium loaded ZSM-5 with gallium to alumina ratio = 3 by hydrothermal method gave the best performance on EBTA. Good gallium dispersion and high strong acid ratio could enhance the aromatics yield from 0.23 to 0.42. On the other hand, wet incipient impregnation method could properly load zinc on the ZSM-5 due to the charge balance. It was found that zinc loading ZSM-5 with zinc to alumina ratio = 1 showed the good performance on EBTA. However, its acid strength became low which led to just little enhancement of aromatics yield from 0.23 to 0.26.
Finally, we used real bio-ethanol, which was produced fermentation from the group of Dr. Wen-Hua Chen in Institute of Nuclear Energy Research, as the feed. We successfully used evaporator and gas chromatography to control the gas concentration to near 72 wt.%. After the EBTA reaction, its aromatics yield was a little higher than that of reactant from simulated ethanol vapor due to some naphthalene derivatives while BTX (benzene, toluene and xylene) yield was comparable the same.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:57:37Z (GMT). No. of bitstreams: 1
ntu-107-R05524009-1.pdf: 7582877 bytes, checksum: 68d93186f3e8c26dcc764a6d9d50f195 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES x
LIST OF TABLES xvii
Chapter 1 緒論 1
Chapter 2 文獻回顧 4
2.1 甲醇轉化與乙醇轉化發展 4
2.1.1 甲醇轉化為碳氫化合物 4
2.1.2 乙醇轉化為碳氫化合物 7
2.1.3 芳香族的市場與價值 9
2.2 生質酒精的合成與應用 10
2.2.1 生質能的發展與應用 10
2.2.2 生質酒精的發展與製程 12
2.3 ZSM-5 15
2.3.1 沸石介紹與定義 15
2.3.2 ZSM-5之結構與性質 17
2.3.3 ZSM-5之合成 17
2.4 以ZSM-5轉化乙醇為芳香族之探討 20
2.4.1 ZSM-5於EBTA的反應機制 20
2.4.2 反應參數的影響 21
2.4.3 負載金屬修正ZSM-5對於EBTA之影響 22
2.4.4 ZSM-5表面改質對於EBTA之影響 24
Chapter 3 實驗方法 25
3.1 實驗藥品與器材 25
3.1.1 實驗藥品 25
3.1.2 實驗儀器與設備 26
3.2 觸媒製備 28
3.2.1 合成不同矽鋁比之ZSM-5 28
3.2.2 以水熱法負載金屬 30
3.2.3 利用初濕含浸法負載金屬 32
3.3 觸媒鑑定與儀器分析原理 33
3.3.1 氣相層析儀 (Gas Chromatograph, GC) 33
3.3.2 X光繞射儀(X-Ray Diffraction, XRD) 37
3.3.3 比表面積與孔徑分布儀(Specific Surface Area Analyzer and Pore Size Distribution, BET) 39
3.3.4 熱重示差同步掃描分析儀(Thermogravimetric and Differential Thermal Analysis,TG-DTA) 40
3.3.5 傅立葉轉換紅外線光譜(Fourier-Transform Infrared Spectrometer, FTIR) 41
3.3.6 感應耦合電漿質譜儀(Inductively coupled plasma mass spectrometry, ICP-MS) 42
3.3.7 場發射高解析電子微探儀(Electron Probe X-Ray Microanalyzer, EPMA) 45
3.3.8 氨氣程溫脫附儀(Ammonia Temperature Programmed Desorption, NH3-TPD) 46
3.3.9 核磁共振儀(Nuclear Magnetic Resonance, NMR) 47
3.4 實驗反應裝置 48
3.5 實驗方法與產物分析 50
3.5.1 EBTA反應實驗步驟 50
3.5.2 酒精轉化反應產物分析 51
3.5.3 檢量線製作 52
3.5.4 乙醇轉化率及產物產率計算 60
Chapter 4 觸媒特性分析結果與討論 64
4.1 未修飾之ZSM-5 64
4.1.1 X光繞射儀 (X-Ray Diffraction, XRD) 64
4.1.2 傅立葉轉換紅外線光譜(Fourier-Transform Infrared Spectrometer, FTIR) 64
4.1.3 場發射高解析電子微探儀(Electron Probe X-Ray Microanalyzer, EPMA) 65
4.1.4 熱重示差同步掃描分析儀(Thermogravimetric and Differential Thermal Analysis,TG-DTA) 66
4.2 負載金屬之ZSM-5 71
4.2.1 感應耦合電漿質譜儀(Inductively coupled plasma mass spectrometry, ICP-MS) 71
4.2.2 場發射高解析電子微探儀 (Electron Probe X-Ray Microanalyzer, EPMA) 72
4.2.3 X光繞射儀(X-Ray Diffraction, XRD) 73
4.2.4 熱重示差同步掃描分析儀(Thermogravimetric and Differential Thermal Analysis,TG-DTA) 77
4.2.5 氨氣程溫脫附儀(Ammonia Temperature Programmed Desorption, NH3-TPD) 82
4.2.6 核磁共振儀(Nuclear Magnetic Resonance, NMR) 86
4.2.7 比表面積與孔徑分布儀(Specific Surface Area Analyzer and Pore Size Distribution, BET) 95
Chapter 5 實驗結果與討論 98
5.1 不同矽鋁比ZSM-5對EBTA之影響 98
5.2 溫度對EBTA之影響 100
5.3 時空流速對EBTA之影響 102
5.4 進料濃度對EBTA之影響 105
5.5 負載Ga對EBTA之影響 108
5.5.1 以水熱法負載不同比例之Ga金屬 108
5.5.2 以初濕含浸法負載不同比例之Ga金屬 111
5.5.3 不同負載Ga金屬之方法比較 113
5.6 負載Zn對EBTA之影響 115
5.6.1 以水熱法負載不同比例之Zn金屬 115
5.6.2 以初濕含浸法負載不同比例之Zn金屬 118
5.6.3 不同負載Zn金屬之方法比較 120
5.7 負載金屬綜合討論 122
5.8 觸媒壽命測試 123
5.9 生質酒精測試 126
Chapter 6 結論與展望 133
REFERENCE 134
個人小傳 140
Appendices 141
dc.language.isozh-TW
dc.subjectZSM-5zh_TW
dc.subject生質酒精zh_TW
dc.subject芳香族zh_TW
dc.subject鎵zh_TW
dc.subject鋅zh_TW
dc.subjectGaen
dc.subjectBio-ethanolen
dc.subjectAromaticsen
dc.subjectZSM-5en
dc.subjectZnen
dc.title從生質酒精發酵液以ZSM-5觸媒一步轉化生成芳香族zh_TW
dc.titleOne-step synthesis of aromatics from bio-ethanol broth using modified ZSM-5 catalysten
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee康敦彥(Dun-Yen Kang),陳文華(Wen-Hua Chen),黃朝偉(Chao-Wei Huang)
dc.subject.keywordZSM-5,生質酒精,芳香族,鎵,鋅,zh_TW
dc.subject.keywordZSM-5,Bio-ethanol,Aromatics,Ga,Zn,en
dc.relation.page154
dc.identifier.doi10.6342/NTU201801789
dc.rights.note有償授權
dc.date.accepted2018-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
7.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved