Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71186
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佳?
dc.contributor.authorYi-Lin Wuen
dc.contributor.author吳依霖zh_TW
dc.date.accessioned2021-06-17T04:57:30Z-
dc.date.available2028-12-31
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-27
dc.identifier.citation1. Vehvilainen, T., et al., High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work. J Occup Environ Hyg, 2016. 13(1): p. 19-29.
2. NEN, O.A.S. and W.J. FISK, Summary of human responses to ventilation. Indoor Air, 2004: p. 14 (Suppl 7): 102–118.
3. 62.1, A.A.S., Ventilation for Acceptable Indoor Air Quality. ANSI/ASHRAE Standard 2016.
4. Lee, J.-H., et al., LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction. Science of The Total Environment, 2015. 514(Supplement C): p. 178-184.
5. Lee, J.-H., et al., Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Science of The Total Environment, 2014. 472(Supplement C): p. 1163-1171.
6. KLEPEIS, N.E., et al., The National Human Activity Pattern Survey (NHAPS). Exposure Analysis and environmental Epidemiology, 2001.
7. Enermocal Engineering, LEED Green Building Rating System. Enermocal Engineering, 2016.
8. IPCC, Climate Change 2014 Synthesis Report Summary for Policymakers. 2014.
9. Wells, E.M., et al., Indoor air quality and occupant comfort in homes with deep versus conventional energy efficiency renovations. Building and Environment, 2015. 93: p. 331-338.
10. NEN, O.A.S., W.J. FISK, and M.J. MENDELL, Association of Ventilation Rates and CO2 Concentrations with Health and Other Responses in Commercial and Institutional Buildings. INDOOR AIR, 1999.
11. Silva, M.F., et al., Post-occupancy evaluation of residential buildings in Luxembourg with centralized and decentralized ventilation systems, focusing on indoor air quality (IAQ). Assessment by questionnaires and physical measurements. Energy and Buildings, 2017. 148: p. 119-127.
12. Carrer, P., et al., What does the scientific literature tell us about the ventilation–health relationship in public and residential buildings? Building and Environment, 2015. 94: p. 273-286.
13. Crook, B. and N.C. Burton, Indoor moulds, Sick Building Syndrome and building related illness. Fungal Biology Reviews, 2010. 24(3-4): p. 106-113.
14. Mishra, S., Is smog innocuous? Air pollution and cardiovascular disease. Indian Heart J, 2017. 69(4): p. 425-429.
15. Su, T.C., et al., Carotid Intima-Media Thickness and Long-Term Exposure to Traffic-Related Air Pollution in Middle-Aged Residents of Taiwan: A Cross-Sectional Study. Environ Health Perspect, 2015. 123(8): p. 773-8.
16. Chuang, H.C., et al., Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study. Environ Int, 2017. 106: p. 91-96.
17. Guillaume F. Lopez1, Kizito N.N.Yuta S., Heart Rate Variability as a Predictive Biomarker of Thermal Comfort
2017.
18. Argacha, J.F., T. Bourdrel, and P. van de Borne, Ecology of the cardiovascular system: A focus on air-related environmental factors. Trends Cardiovasc Med, 2017.
19. J. Antonio Carmona Suazo, M.A.I.R.M., MD, PhD; Willem A. van den Brink, MD, PhD; Henk van Santbrink, MD; Ewout W. Steyerberg, PhD; Cees J. J. Avezaat, MD, PhD, CO2 reactivity and brain oxygen pressure monitoring in severe. Crit Care Med 2000. Vol. 28, No. 9.
20. Indoor Environmental Quality, Building Ventilation. National Institute for Occupational Safety and Health. Indoor Environmental Quality, 2008.
21. U.S. Green Building Council, Leadership in Energy and Environmental Design. U.S. Green Building Council, 2017.
22. Huang, Y.-C., et al., Building users' perceptions of importance of indoor environmental quality in long-term care facilities. Building and Environment, 2013. 67: p. 224-230.
23. Environmental Protection Department of Taiwan Executive Yuan, Indoor Air Quality Management Act 2012.
24. Durrani, F., M.J. Cook, and J.J. McGuirk, Evaluation of LES and RANS CFD modelling of multiple steady states in natural ventilation. Building and Environment, 2015. 92: p. 167-181.
25. Le Roux, N., et al., Reduced-scale study of wind influence on mean airflows inside buildings equipped with ventilation systems. Building and Environment, 2012. 58: p. 231-244.
26. van Hooff, T. and B. Blocken, CFD evaluation of natural ventilation of indoor environments by the concentration decay method: CO2 gas dispersion from a semi-enclosed stadium. Building and Environment, 2013. 61: p. 1-17.
27. Cui, S., et al., CO2 tracer gas concentration decay method for measuring air change rate. Building and Environment, 2015. 84: p. 162-169.
28. Ai, Z.T. and C.M. Mak, Short-term mechanical ventilation of air-conditioned residential buildings: A general design framework and guidelines. Building and Environment, 2016. 108: p. 12-22.
29. Broderick, Á., et al., A pre and post evaluation of indoor air quality, ventilation, and thermal comfort in retrofitted co-operative social housing. Building and Environment, 2017. 122: p. 126-133.
30. Stabile, L., et al., The effect of natural ventilation strategy on indoor air quality in schools. Sci Total Environ, 2017. 595: p. 894-902.
31. Park, J.S., N.Y. Jee, and J.W. Jeong, Effects of types of ventilation system on indoor particle concentrations in residential buildings. Indoor Air, 2014. 24(6): p. 629-38.
32. McGill, G., L.O. Oyedele, and K. McAllister, Case study investigation of indoor air quality in mechanically ventilated and naturally ventilated UK social housing. International Journal of Sustainable Built Environment, 2015. 4(1): p. 58-77.
33. Ahmed, A.Q., S. Gao, and A.K. Kareem, Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms. Applied Thermal Engineering, 2017. 110: p. 821-834.
34. Méndez, C., et al., Optimization of a hospital room by means of CFD for more efficient ventilation. Energy and Buildings, 2008. 40(5): p. 849-854.
35. Tung, Y.-C., Y.-C. Shih, and S.-C. Hu, Numerical study on the dispersion of airborne contaminants from an isolation room in the case of door opening. Applied Thermal Engineering, 2009. 29(8-9): p. 1544-1551.
36. Verma, T.N., A.K. Sahu, and S.L. Sinha, Study of Particle Dispersion on One Bed Hospital using Computational Fluid Dynamics. Materials Today: Proceedings, 2017. 4(9): p. 10074-10079.
37. Bulińska, A., Z. Popiołek, and Z. Buliński, Experimentally validated CFD analysis on sampling region determination of average indoor carbon dioxide concentration in occupied space. Building and Environment, 2014. 72: p. 319-331.
38. Chang, T.-B., et al., Development of a CFD model for simulating vehicle cabin indoor air quality. Transportation Research Part D: Transport and Environment, 2018. 62: p. 433-440.
39. Noh, K.-C. and S.-J. Yook, Evaluation of clean air delivery rates and operating cost effectiveness for room air cleaner and ventilation system in a small lecture room. Energy and Buildings, 2016. 119: p. 111-118.
40. Ismailos, C. and M.F. Touchie, Achieving a low carbon housing stock: An analysis of low-rise residential carbon reduction measures for new construction in Ontario. Building and Environment, 2017. 126: p. 176-183.
41. MacNaughton, P., et al., The Impact of Working in a Green Certified Building on Cognitive Function and Health. Build Environ, 2017. 114: p. 178-186.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71186-
dc.description.abstract研究指出人類在各種社會、生活以及生產活動中,約有80%-90%的時間是在室內環境中度過。因此,室內空氣品質直接影響著人們的身體健康。若室內污染物不能及時排除,將導致室內空氣品質不佳,居住者可能會染上各種病態建築綜合症,並且發現通風的改善與是否得到病態建築綜合症有高度相關,從流行病學研究也發現,通氣量的改善可以順利降低二氧化碳濃度,並藉此改善氣喘或是過敏等呼吸道疾病。
本研究根據ASHRAE_62.1,62.2與我國規範的「室內空氣品質管理法」,希望完成屬於居家的室內空氣品質改善方針,此方針希望可以解決目前大部分家庭空氣品質不佳的狀況。研究範圍以台灣地區住宅為基礎,實地採樣並且利用計算流體力學(CFD)的方式,以探討二氧化碳濃度與其他空氣品質指標為主,去歸納適合各種住宅的通風方針,並提出較完整的居家通風改善策略。
本實驗藉由室內空氣品質與流體流動的相關性做改善設計,利用在臥室裝置排氣裝置,控制整體流場流動方向,並運用計算流體力學方式研究,使整體通風的平均二氧化碳濃度達到1000 ppm以內的範圍,並且使人體活動的範圍可以達到二氧化碳濃度600 ppm以下,甚至更低,並且不需要加大抽風量而達到節能的效果。
不同於以往單純加大流量的方式,而是採用更節能省電的排氣設備與通風策略,同時兼顧綠建築的概念與良好空氣品質為主要目標,進而歸納出一套適用於大部分居住環境的通風改善方式,而改善大部分住宅內的室內空氣品質。
zh_TW
dc.description.abstractIn the past researches, people spend more than 80% of their time indoors. However, we live in the space with poor indoor air quality, that makes us get some symptoms like respiratory symptoms, asthma and allergy symptoms. Therefore, the indoor air quality directly affects people's health. In the study, the research area is mainly based in Taipei, Taiwan. The methods used in this study primarily involved of air-sampling stations were set up in a central indoor and outdoor location at each residence. On the other hand, computational fluid dynamics (CFD) is used to establish ventilation strategy that’s suitable for most of the residential area. In the study, the mainly contains the carbon dioxide concentration and the indoor air quality indicators in Taiwan. In the past, it was found that the simple calculation of air change rate per hour (ACH) through the amount of exhaust air what can achieve the indoor air quality improvement, but to increase more energy consumption. Thus, we investigated that the correlation between indoor air quality and thermal comfort. We set a suction flow at the bedside to the bedroom. Through the control of air flow movement, carbon dioxide (CO2) concentration was in the range of 1000 ppm in the general ventilation system equation when a mannequin was installed on the bed with continuous CO2 generation, but the area of human activities where CO2 concentration is lower than 600 ppm even lower than 500 ppm. It doesn’t increase air Change rate per Hour and more energy consumption to achieve indoor air quality and thermal comfort improvementen
dc.description.provenanceMade available in DSpace on 2021-06-17T04:57:30Z (GMT). No. of bitstreams: 1
ntu-107-R05841004-1.pdf: 3658398 bytes, checksum: cee36862297b8e81e9565d955ef1d26d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
符號縮寫 vi
符號說明 vii
表圖索引 viii
第一章. 緒論 1
1-1. 研究動機 1
1-2. 文獻回顧 3
1-3. 研究目的與方法 10
第二章. 實驗方法與材料 12
2-2. 統御方程式 14
2-3. 邊界條件與初始條件 16
2-4. 數值模擬 18
2-5. 使用儀器 22
第三章. 居家現場調查與結果 31
3-1. 居家現場31家家戶調查 31
第四章. 自然通風分析比較 43
第五章. 狹長型排氣系統 46
5-1. 外展型模態 (Wing Mode) 46
5-2. 過渡模態 (Transition Mode) 48
5-3. 鐘型模態 (Bell Mode) 51
5-4. 狹長型排氣系統流量效益探討 56
第六章. 狹長型排氣系統形狀討論 59
6-1. 狹長管、圓管與方管設計 H/L 30/30比較 60
6-2. 狹長管、圓管與方管設計 H/L 10/05比較 62
6-3. 狹長型、圓管與方管比較 (表6-2) 65
第七章. 狹長型排氣系統與市售全熱交換器效益比較 68
7-1. 狹長排氣系統H/L 10/5與市售全熱交換器不同流量比較討論 70
第八章. 結論與建議 74
8-1. 第一部分 74
8-2. 第二部分 74
8-3. 第三部分 75
8-4. 第四部分 75
8-5. 第五部分 75
參考文獻 76
dc.language.isozh-TW
dc.title居家臥室汙染源利用狹長側向排氣系統換氣效益之探討zh_TW
dc.titleCFD Assessment of Slot-Type Ventilation Benefits of Indoor Environment in Bedroom Pollution Sourcesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇大成,李孟杰,曾子彝
dc.subject.keyword關鍵字:密閉空間,二氧化碳,室內空氣品質,計算流體動力學,病態建築綜合症,zh_TW
dc.subject.keywordKeywords: Confined spaces,Carbon dioxide,Indoor air quality,Computational Fluid Dynamics,Sick Building Syndrome,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201801840
dc.rights.note有償授權
dc.date.accepted2018-07-27
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved