Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71153
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭景暉(Jiiang-Huei Jeng),張曉華(Hsiao-Hua Chang)
dc.contributor.authorWan-Chun Hsiehen
dc.contributor.author謝宛君zh_TW
dc.date.accessioned2021-06-17T04:55:47Z-
dc.date.available2021-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-07-27
dc.identifier.citationAbout, I., Laurent-Maquin, D., Lendahl, U., & Mitsiadis, T. A. (2000). Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am J Pathol, 157(1), 287-295. doi:10.1016/s0002-9440(10)64539-7
Ali Nosrat, J. R. K., Prashant Verma, Priya S. Chand. (2014). Tissue Engineering Considerations in Dental Pulp Regeneration. Iran Endod J, 9(1), 30-40.
Alvarez-Perez, M. A., Narayanan, S., Zeichner-David, M., Rodriguez Carmona, B., & Arzate, H. (2006). Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone, 38(3), 409-419. doi:10.1016/j.bone.2005.09.009
Arnott, J. A., Nuglozeh, E., Rico, M. C., Arango-Hisijara, I., Odgren, P. R., Safadi, F. F., & Popoff, S. N. (2007). Connective tissue growth factor (CTGF/CCN2) is a downstream mediator for TGF-beta1-induced extracellular matrix production in osteoblasts. J Cell Physiol, 210(3), 843-852. doi:10.1002/jcp.20917
Bansal, R., & Jain, A. (2015). Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med, 6(1), 29-34. doi:10.4103/0976-9668.149074
Bansal, R., Jain, A., & Mittal, S. (2015). Current overview on challenges in regenerative endodontics. J Conserv Dent, 18(1), 1-6. doi:10.4103/0972-0707.148861
Bar-Kana, I., Savion, N., Narayanan, A. S., & Pitaru, S. (1998). Cementum attachment protein manifestation is restricted to the mineralized tissue forming cells of the periodontium. Eur J Oral Sci, 106 Suppl 1, 357-364.
Barton, D. E., Foellmer, B. E., Du, J., Tamm, J., Derynck, R., & Francke, U. (1988). Chromosomal mapping of genes for transforming growth factors beta 2 and beta 3 in man and mouse: dispersion of TGF-beta gene family. Oncogene Res, 3(4), 323-331.
Bellamy, C., Shrestha, S., Torneck, C., & Kishen, A. (2016). Effects of a Bioactive Scaffold Containing a Sustained Transforming Growth Factor-beta1-releasing Nanoparticle System on the Migration and Differentiation of Stem Cells from the Apical Papilla. J Endod, 42(9), 1385-1392. doi:10.1016/j.joen.2016.06.017
Bermudez, M., Imaz-Rosshandler, I., Rangel-Escareno, C., Zeichner-David, M., Arzate, H., & Mercado-Celis, G. E. (2015). CEMP1 induces transformation in human gingival fibroblasts. PLoS One, 10(5), e0127286. doi:10.1371/journal.pone.0127286
Bilandzic, M., & Stenvers, K. L. (2011). Betaglycan: a multifunctional accessory. Mol Cell Endocrinol, 339(1-2), 180-189. doi:10.1016/j.mce.2011.04.014
Blaschuk, O. W. (2015). N-cadherin antagonists as oncology therapeutics. Philos Trans R Soc Lond B Biol Sci, 370(1661), 20140039. doi:10.1098/rstb.2014.0039
Bokhari, A. A., Baker, T. M., Dorjbal, B., Waheed, S., Zahn, C. M., Hamilton, C. A., . . . Syed, V. (2016). Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-beta signaling pathway. Oncotarget, 7(43), 69733-69748. doi:10.18632/oncotarget.11947
Carmona-Rodriguez, B., Alvarez-Perez, M. A., Narayanan, A. S., Zeichner-David, M., Reyes-Gasga, J., Molina-Guarneros, J., . . . Arzate, H. (2007). Human cementum protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts. Biochem Biophys Res Commun, 358(3), 763-769. doi:10.1016/j.bbrc.2007.04.204
Chang, H.-H., Chang, M.-C., Wu, I. H., Huang, G.-F., Huang, W.-L., Wang, Y.-L., . . . Jeng, J.-H. (2015). Role of ALK5/Smad2/3 and MEK1/ERK signaling in transforming growth factor beta 1–modulated growth, collagen turnover, and differentiation of stem cells from apical papilla of human tooth. J Endod, 41(8), 1272-1280. doi:10.1016/j.joen.2015.03.022
Chen, G., Deng, C., & Li, Y. P. (2012). TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci, 8(2), 272-288. doi:10.7150/ijbs.2929
Choi, H., Ahn, Y. H., Kim, T. H., Bae, C. H., Lee, J. C., You, H. K., & Cho, E. S. (2016). TGF-beta signaling regulates cementum formation through osterix expression. Sci Rep, 6, 26046. doi:10.1038/srep26046
Chrepa, V., Pitcher, B., Henry, M. A., & Diogenes, A. (2017). Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical periodontitis. J Endod, 43(4), 561-567. doi:10.1016/j.joen.2016.09.024
Corbella, S., Ferrara, G., El Kabbaney, A., & Taschieri, S. (2014). Apexification, apexogenesis and regenerative endodontic procedures: a review of the literature. Minerva Stomatol, 63(11-12), 375-389.
Cvek, M. (1992). Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol, 8(2), 45-55.
Derycke, L. D., & Bracke, M. E. (2004). N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol, 48(5-6), 463-476. doi:10.1387/ijdb.041793ld
Diamond, M. E., Sun, L., Ottaviano, A. J., Joseph, M. J., & Munshi, H. G. (2008). Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium. J Cell Sci, 121(13), 2197-2207. doi:10.1242/jcs.021782
Ding, Z. Y., Jin, G. N., Liang, H. F., Wang, W., Chen, W. X., Datta, P. K., . . . Chen, X. P. (2013). Transforming growth factor beta induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell Signal, 25(10), 1981-1992. doi:10.1016/j.cellsig.2013.05.027
Dong, C., Zhu, S., Wang, T., Yoon, W., & Goldschmidt-Clermont, P. J. (2002). Upregulation of PAI-1 is mediated through TGF-beta/Smad pathway in transplant arteriopathy. J Heart Lung Transplant, 21(9), 999-1008.
Dziubinska, P., Jaskolska, M., Przyborowska, P., & Adamiak, Z. (2013). Stem cells in dentistry--review of literature. Pol J Vet Sci, 16(1), 135-140.
Euler, G. (2015). Good and bad sides of TGFβ-signaling in myocardial infarction. Front Physiol, 6(66). doi:10.3389/fphys.2015.00006
Farea, M., Husein, A., Halim, A. S., Berahim, Z., Nurul, A. A., Mokhtar, K. I., & Mokhtar, K. (2016). Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig, 20(6), 1181-1191. doi:10.1007/s00784-015-1601-6
Franzen, P., ten Dijke, P., Ichijo, H., Yamashita, H., Schulz, P., Heldin, C. H., & Miyazono, K. (1993). Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell, 75(4), 681-692.
George T.-J. Huang, W. S., Yi Liu,He Liu, Songlin Wang, and Songtao Shi. (2008). The Hidden Treasure in Apical Papilla: The Potential Role in Pulp/Dentin Regeneration and BioRoot Engineering. J Endod, 34, 645-651. doi:10.1016/j.joen.2008.03.001
Gils, A., & Declerck, P. J. (1998). Structure-function relationships in serpins: current concepts and controversies. Thromb Haemost, 80(4), 531-541.
Guerette, D., Khan, P. A., Savard, P. E., & Vincent, M. (2007). Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol, 7, 164. doi:10.1186/1471-2148-7-164
Handa, K., Saito, M., Yamauchi, M., Kiyono, T., Sato, S., Teranaka, T., & Sampath Narayanan, A. (2002). Cementum matrix formation in vivo by cultured dental follicle cells. Bone, 31(5), 606-611.
He, Y. D., Sui, B. D., Li, M., Huang, J., Chen, S., & Wu, L. A. (2016). Site-specific function and regulation of Osterix in tooth root formation. Int Endod J, 49(12), 1124-1131. doi:10.1111/iej.12585
Heymann, R., About, I., Lendahl, U., Franquin, J. C., Obrink, B., & Mitsiadis, T. A. (2002). E- and N-cadherin distribution in developing and functional human teeth under normal and pathological conditions. Am J Pathol, 160(6), 2123-2133. doi:10.1016/s0002-9440(10)61161-3
Hinck, A. P. (2012). Structural studies of the TGF-betas and their receptors - insights into evolution of the TGF-beta superfamily. FEBS Lett, 586(14), 1860-1870. doi:10.1016/j.febslet.2012.05.028
Huang, G. T., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res, 88(9), 792-806. doi:10.1177/0022034509340867
Hyder, C. L., Lazaro, G., Pylvanainen, J. W., Roberts, M. W., Qvarnstrom, S. M., & Eriksson, J. E. (2014). Nestin regulates prostate cancer cell invasion by influencing the localisation and functions of FAK and integrins. J Cell Sci, 127(Pt 10), 2161-2173. doi:10.1242/jcs.125062
Igarashi, A., Nashiro, K., Kikuchi, K., Sato, S., Ihn, H., Fujimoto, M., . . . Takehara, K. (1996). Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol, 106(4), 729-733.
Ihn, H. (2002). Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr Opin Rheumatol, 14(6), 681-685.
Janmey, P. A., Euteneuer, U., Traub, P., & Schliwa, M. (1991). Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol, 113(1), 155-160.
Jin, B., & Choung, P. H. (2016). Recombinant human plasminogen activator inhibitor-1 accelerates odontoblastic differentiation of human stem cells from apical papilla. Tissue Eng Part A, 22(9-10), 721-732. doi:10.1089/ten.tea.2015.0273
Jin, H., Choung, H. W., Lim, K. T., Jin, B., Jin, C., Chung, J. H., & Choung, P. H. (2015). Recombinant human plasminogen activator inhibitor-1 promotes cementogenic differentiation of human periodontal ligament stem cells. Tissue Eng Part A, 21(23-24), 2817-2828. doi:10.1089/ten.TEA.2014.0399
Karsdal, M. A., Fjording, M. S., Foged, N. T., Delaisse, J. M., & Lochter, A. (2001). Transforming growth factor-beta-induced osteoblast elongation regulates osteoclastic bone resorption through a p38 mitogen-activated protein kinase- and matrix metalloproteinase-dependent pathway. J Biol Chem, 276(42), 39350-39358. doi:10.1074/jbc.M008738200
Kemoun, P., Laurencin-Dalicieux, S., Rue, J., Farges, J. C., Gennero, I., Conte-Auriol, F., . . . Salles, J. P. (2007). Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res, 329(2), 283-294. doi:10.1007/s00441-007-0397-3
Kero, D., Kalibovic Govorko, D., Vukojevic, K., Cubela, M., Soljic, V., & Saraga-Babic, M. (2014). Expression of cytokeratin 8, vimentin, syndecan-1 and Ki-67 during human tooth development. J Mol Histol, 45(6), 627-640. doi:10.1007/s10735-014-9592-1
Kim, J. H., Jang, Y. S., Eom, K. S., Hwang, Y. I., Kang, H. R., Jang, S. H., . . . Kim, D. G. (2007). Transtorming growth factor β1 induces epithelial-to-mesenchymal transition of A549 cells. J Korean Med Sci, 22(5), 898-904. doi:10.3346/jkms.2007.22.5.898
Kim, T. H., Bae, C. H., Lee, J. C., Kim, J. E., Yang, X., de Crombrugghe, B., & Cho, E. S. (2015). Osterix regulates tooth root formation in a site-specific manner. J Dent Res, 94(3), 430-438. doi:10.1177/0022034514565647
Lee, D. S., Yoon, W. J., Cho, E. S., Kim, H. J., Gronostajski, R. M., Cho, M. I., & Park, J. C. (2011). Crosstalk between nuclear factor I-C and transforming growth factor-beta1 signaling regulates odontoblast differentiation and homeostasis. PLoS One, 6(12), e29160. doi:10.1371/journal.pone.0029160
Lendahl, U., Zimmerman, L. B., & McKay, R. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4), 585-595.
Li, S., Shao, J., Zhou, Y., Friis, T., Yao, J., Shi, B., & Xiao, Y. (2016). The impact of Wnt signalling and hypoxia on osteogenic and cementogenic differentiation in human periodontal ligament cells. Mol Med Rep, 14(6), 4975-4982. doi:10.3892/mmr.2016.5909
Lijnen, H. R. (2005). Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost, 3(1), 35-45. doi:10.1111/j.1538-7836.2004.00827.x
Lin, P. S., Chang, H. H., Yeh, C. Y., Chang, M. C., Chan, C. P., Kuo, H. Y., . . . Jeng, J. H. (2017). Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling. J Formos Med Assoc, 116(5), 351-358. doi:10.1016/j.jfma.2016.07.014
Lv, Z. D., Kong, B., Li, J. G., Qu, H. L., Wang, X. G., Cao, W. H., . . . Wang, H. B. (2013). Transforming growth factor-beta 1 enhances the invasiveness of breast cancer cells by inducing a Smad2-dependent epithelial-to-mesenchymal transition. Oncol Rep, 29(1), 219-225. doi:10.3892/or.2012.2111
Mandal, C. C., Drissi, H., Choudhury, G. G., & Ghosh-Choudhury, N. (2010). Integration of phosphatidylinositol 3-kinase, Akt kinase, and Smad signaling pathway in BMP-2-induced osterix expression. Calcif Tissue Int, 87(6), 533-540. doi:10.1007/s00223-010-9419-3
Massague, J. (2012). TGFbeta signalling in context. Nat Rev Mol Cell Biol, 13(10), 616-630. doi:10.1038/nrm3434
Mendes, F. A., Coelho Aguiar, J. M., Kahn, S. A., Reis, A. H., Dubois, L. G., Romao, L. F., . . . Abreu, J. G. (2015). Connective-tissue growth factor (CTGF/CCN2) induces astrogenesis and fibronectin expression of embryonic neural cells In vitro. PLoS One, 10(8), e0133689. doi:10.1371/journal.pone.0133689
Mendez, M. G., Restle, D., & Janmey, P. A. (2014). Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys J, 107(2), 314-323. doi:10.1016/j.bpj.2014.04.050
Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., . . . Frenette, P. S. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829-834. doi:10.1038/nature09262
Mize, T. W., Sundararaj, K. P., Leite, R. S., & Huang, Y. (2015). Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis. J Periodontal Res, 50(3), 315-319. doi:10.1111/jre.12208
Montoya, G., Arenas, J., Romo, E., Zeichner-David, M., Alvarez, M., Narayanan, A. S., . . . Arzate, H. (2014). Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo. Bone, 69, 154-164. doi:10.1016/j.bone.2014.09.014
Muromachi, K., Kamio, N., Matsumoto, T., & Matsushima, K. (2012). Role of CTGF/CCN2 in reparative dentinogenesis in human dental pulp. J Oral Sci, 54(1), 47-54.
Nakajima, S., Doi, R., Toyoda, E., Tsuji, S., Wada, M., Koizumi, M., . . . Imamura, M. (2004). N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res, 10(12), 4125-4133. doi:10.1158/1078-0432.ccr-0578-03
Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J. M., Behringer, R. R., & de Crombrugghe, B. (2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 108(1), 17-29.
Nakashima, M. (1992). The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch Oral Biol, 37(3), 231-236.
Nayak, M. T., Singh, A., Desai, R. S., & Vanaki, S. S. (2013). Immunohistochemical analysis of vimentin in oral submucous fibrosis. J Cancer Epidemiol, 2013. doi:10.1155/2013/549041
Nikita B. Ruparel, J. e. F. v. A. d. A., Michael A. Henry, and Anibal Diogenes. (2012). Characterization of a stem cell of apical papilla cell line:
effect of passage on cellular phenotype. J Endod, 39, 357-363. doi:10.1016/j.joen.2012.10.027
Niwa, T., Yamakoshi, Y., Yamazaki, H., Karakida, T., Chiba, R., Hu, J. C., . . . Gomi, K. (2018). The dynamics of TGF-beta in dental pulp, odontoblasts and dentin. Sci Rep, 8(1), 4450. doi:10.1038/s41598-018-22823-7
O’Connor, J. W., & Gomez, E. W. (2013). Cell adhesion and shape regulate TGF-beta1-induced epithelial-myofibroblast transition via MRTF-A signaling. PLoS One, 8(12), e83188. doi:10.1371/journal.pone.0083188
Ochiai, H., Yamamoto, Y., Yokoyama, A., Yamashita, H., Matsuzaka, K., Abe, S., & Azuma, T. (2010). Dual nature of TGF-beta1 in osteoblastic differentiation of human periodontal ligament cells. J Hard Tissue Biol, 19(3), 187-194. doi:10.2485/jhtb.19.187
Parada, C., Li, J., Iwata, J., Suzuki, A., & Chai, Y. (2013). CTGF mediates smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development. Mol Cell Biol, 33(17), 3482-3493. doi:10.1128/MCB.00615-13
Peter E. Murray, B. H., Franklin Garcia-Godoy, and Kenneth M. Hargreaves. (2007). Regenerative endodontics:a review of current status and a call for action. J Endod, 33, 377-390. doi:10.1016/j.joen.2006.09.013
Ploplis, V. A. (2011). Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease. Curr Drug Targets, 12(12), 1782-1789.
Poniatowski, L. A., Wojdasiewicz, P., Gasik, R., & Szukiewicz, D. (2015). Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm, 2015, 137823. doi:10.1155/2015/137823
S. Su, Y. Z., S. Li, Y. Liang & J. Zhang. (2016). The transcription factor cyclic adenosine 30,50-monophosphate response element-binding protein enhances the odonto/osteogenic differentiation of stem cells from the apical papilla. doi:10.1111/iej.12709
Saito, M., Iwase, M., Maslan, S., Nozaki, N., Yamauchi, M., Handa, K., . . . Narayanan, A. S. (2001). Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone, 29(3), 242-248.
Shi, Y., & Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 113(6), 685-700.
Silvia, M., Enrique, R., Janeth, S., Adriana, P., Christian, G., Margarita, Z. D., . . . Higinio, A. (2014). Cementum protein 1 (CEMP1) activates p38 and JNK during the mineralisation process by cementoblast‐like cells in vitro. Cell Biol Int Rep, 21(1), 8-16. doi:doi:10.1002/cbi3.10011
Smith, A. J. (2003). Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J Dent Educ, 67(6), 678-689.
Smith, A. J., Scheven, B. A., Takahashi, Y., Ferracane, J. L., Shelton, R. M., & Cooper, P. R. (2012). Dentine as a bioactive extracellular matrix. Arch Oral Biol, 57(2), 109-121. doi:10.1016/j.archoralbio.2011.07.008
Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B. M., Zhang, C., . . . Shi, S. (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 1, e79. doi:10.1371/journal.pone.0000079
Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., & Huang, G. T. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod, 34(2), 166-171. doi:10.1016/j.joen.2007.11.021
Su, H. T., Weng, C. C., Hsiao, P. J., Chen, L. H., Kuo, T. L., Chen, Y. W., . . . Cheng, K. H. (2013). Stem cell marker nestin is critical for TGF-beta1-mediated tumor progression in pancreatic cancer. Mol Cancer Res, 11(7), 768-779. doi:10.1158/1541-7786.mcr-12-0511
Su, X., Yu, M., Qiu, G., Zheng, Y., Chen, Y., Wen, R., . . . Wang, D. (2016). Evaluation of nestin or osterix promoter-driven cre/loxp system in studying the biological functions of murine osteoblastic cells. Am J Transl Res, 8(3), 1447-1459.
Takeichi, M. (1988). The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development, 102(4), 639-655.
Terling, C., Rass, A., Mitsiadis, T. A., Fried, K., Lendahl, U., & Wroblewski, J. (1995). Expression of the intermediate filament nestin during rodent tooth development. Int J Dev Biol, 39(6), 947-956.
Tobias Duarte, P. C., Gomes-Filho, J. E., Ervolino, E., Marcal Mazza Sundefeld, M. L., Tadahirowayama, M., Lodi, C. S., . . . Angelo Cintra, L. T. (2014). Histopathological condition of the remaining tissues after endodontic infection of rat immature teeth. J Endod, 40(4), 538-542. doi:10.1016/j.joen.2013.09.015
Tsantes, A. E., Nikolopoulos, G. K., Bagos, P. G., Bonovas, S., Kopterides, P., & Vaiopoulos, G. (2008). The effect of the plasminogen activator inhibitor-1 4G/5G polymorphism on the thrombotic risk. Thromb Res, 122(6), 736-742. doi:10.1016/j.thromres.2007.09.005
Vaittinen, S., Lukka, R., Sahlgren, C., Rantanen, J., Hurme, T., Lendahl, U., . . . Kalimo, H. (1999). Specific and innervation-regulated expression of the intermediate filament protein nestin at neuromuscular and myotendinous junctions in skeletal muscle. Am J Pathol, 154(2), 591-600. doi:10.1016/s0002-9440(10)65304-7
Verstraeten, B., van Hengel, J., Sanders, E., Van Roy, F., & Huysseune, A. (2013). N-cadherin is required for cytodifferentiation during zebrafish odontogenesis. J Dent Res, 92(4), 365-370. doi:10.1177/0022034513477424
Webb, P. P., Moxham, B. J., Benjamin, M., & Ralphs, J. R. (1996). Changing expression of intermediate filaments in fibroblasts and cementoblasts of the developing periodontal ligament of the rat molar tooth. J Anat, 188 ( Pt 3), 529-539.
Wiman, B. (1995). Plasminogen activator inhibitor 1 (PAI-1) in plasma: its role in thrombotic disease. Thromb Haemost, 74(1), 71-76.
Wu, D., Ikezawa, K., Parker, T., Saito, M., & Narayanan, A. S. (1996). Characterization of a collagenous cementum-derived attachment protein. J Bone Miner Res, 11(5), 686-692. doi:10.1002/jbmr.5650110517
Xu, P., Liu, J., & Derynck, R. (2012). Post-translational regulation of TGF-beta receptor and Smad signaling. FEBS Lett, 586(14), 1871-1884. doi:10.1016/j.febslet.2012.05.010
Yang, G., Li, X., Yuan, G., Liu, P., & Fan, M. (2014). The effects of osterix on the proliferation and odontoblastic differentiation of human dental papilla cells. J Endod, 40(11), 1771-1777. doi:10.1016/j.joen.2014.04.012
Yasar Yildiz, S., Kuru, P., Toksoy Oner, E., & Agirbasli, M. (2014). Functional stability of plasminogen activator inhibitor-1. Sci World J, 2014, 858293. doi:10.1155/2014/858293
Young, C. S., Abukawa, H., Asrican, R., Ravens, M., Troulis, M. J., Kaban, L. B., . . . Yelick, P. C. (2005). Tissue-engineered hybrid tooth and bone. Tissue Eng, 11(9-10), 1599-1610. doi:10.1089/ten.2005.11.1599
Yuda, A., Maeda, H., Fujii, S., Monnouchi, S., Yamamoto, N., Wada, N., . . . Akamine, A. (2015). Effect of CTGF/CCN2 on osteo/cementoblastic and fibroblastic differentiation of a human periodontal ligament stem/progenitor cell line. J Cell Physiol, 230(1), 150-159. doi:10.1002/jcp.24693
Zhang, C., Zhu, Z., Liu, J., Yang, X., Fu, L., & Deng, A. (2007). Role of connective tissue growth factor in extracellular matrix degradation in renal tubular epithelial cells. J Huazhong U Sci, 27(1), 44-47. doi:10.1007/s11596-007-0113-2
Zhou, X., Zhang, Z., Feng, J. Q., Dusevich, V. M., Sinha, K., Zhang, H., . . . de Crombrugghe, B. (2010). Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci U S A, 107(29), 12919-12924. doi:10.1073/pnas.0912855107
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71153-
dc.description.abstract實驗目的:本實驗目的是透過研究osterix(osx),巢蛋白(nestin),波形蛋白(vimentin),結締組織生長因子(CTGF),N-鈣粘蛋白(N-cadherin),牙骨質蛋白1(CEMP1),牙骨質附著蛋白(CAP)和纖溶酶原激活抑製劑-1(PAI-1)等分化相關標誌物的表現,探索TGF-β1誘導人類牙根尖細胞分化的潛力。並且探索其相關的訊號傳遞途徑。
實驗方法 : 將人類牙根尖細胞暴露於不同濃度(0, 0.5, 1, 5, 10, 25 ng / ml)的TGF-β1下24小時,利用分化相關標誌物如osx,nestin,vimentin,CTGF,N-cadherin,CEMP1,CAP和PAI-1透過反轉錄聚合酶連鎖反應(RT-PCR),西方點墨法(western blot)以及免疫螢光染色來看其影響基因或蛋白的表現為何。此外,使用SB431542(ALK5 / Smad2抑制劑)的預先處理來研究TGF-β1誘導人類牙根尖細胞的分化作用是否透過Smad依賴性(經典)訊號途徑傳遞。
實驗結果 : 暴露於TGF-β1 24小時的人類牙根尖細胞沒有明顯的形態改變。當加入TGF-β1時,osx,nestin,vimentin,CTGF,N-cadherin,CEMP1,CAP和PAI-1的基因和/或蛋白質表現增加。此外,加入1, 2.5 μM SB431542後減少了TGF-β1誘導的nestin,vimentin,CTGF,N-cadherin和PAI-1的表現。然而,加入抑制劑SB431542並未抑制osx,CEMP1和CAP的表現。
結論 : TGF-β1可能具有誘導人類牙根尖細胞多種分化潛能的能力,例如骨生成,牙本質形成,牙骨質生成,以及影響細胞外基質生成轉換。由TGF-β1誘導的nestin,vimentin,CTGF,N-cadherin和PAI-1的表現是透過ALK5 / Smad2信號傳遞路徑。然而,由TGF-β1誘導的osx,CEMP1和CAP的表現則不是經由此路徑傳遞。TGF-β1及牙根尖細胞應具有應用在臨床再生性牙髓治療的潛力。
zh_TW
dc.description.abstractAim : The aim of the study is to investigate the differentiation potentials of human apical papilla cells induced by TGF-β1 by analyzing the expressions of differentiation related markers, including osterix (osx), nestin, vimentin, connective tissue growth factor (CTGF), N-cadherin, cementum protein 1 (CEMP1), cementum attachment protein(CAP), and plasminogen activation inhibitor-1(PAI-1). The signaling pathway conveying the effects was also explored.
Materials and methods: Primary-cultured human apical papilla cells were treated with different concentrations (0, 0.5, 1, 5, 10, 25 ng/ml) of TGF-β1 for 24 hours. The expressions of osx, nestin, vimentin, CTGF, N-cadherin, CEMP1, CAP, and PAI-1 were evaluated through RT-PCR, western blot, and immunofluorescence. In addition, pretreatment of SB431542 (as a specific ALK5/Smad2 inhibitor) was used to investigate the Smad-dependent (canonical) pathway in TGF-β1-induced effects on human apical papilla cells.
Results: Human apical papilla cells exposed to TGF-β1 for 24 hours showed no obvious morphology change. The mRNA and/or protein expressions of osx, nestin, vimentin, CTGF, N-cadherin, CEMP1, CAP, and PAI-1 showed increased when adding TGF-β1. Besides, pretreatment of 1and 2.5 µM SB431542 reduced TGF-β1 stimulated-expressions of nestin, vimentin, CTGF, N-cadherin, and PAI-1. However, the expressions of osx, CEMP1, and CAP were not inhibited by adding inhibitor SB431542.
Conclusions : TGF-β1 may be capable to induce various differentiation potentials of human apical papilla cells such as osteogenesis, odontogenesis and cementogenesis, and to modulate the turnover of extracellular matrix. The expressions of nestin, vimentin, CTGF, N-cadherin, and PAI-1 induced by TGF-β1 were conveyed through ALK5/Smad2 signaling pathway. However, the expressions of Osx, CEMP1, and CAP induced by TGF-β1 were not. The information may benefit the development of new strategies for regenerative endodontics.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:55:47Z (GMT). No. of bitstreams: 1
ntu-107-R04422010-1.pdf: 12144634 bytes, checksum: f0a6390dda9cc20f1121300527e32b74 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
中文摘要 iii
Abstract v
Chapter I. Literature review 1
1.1 Regenerative endodontics 1
1.2 Introduction of stem cells from apical papilla 3
1.3 Introduction of transforming growth factor beta 7
1.3.1 TGF-β superfamily 7
1.3.2 TGF-β isoforms and their peptide structure 9
1.3.3 Receptors and signaling pathways of TGF-β 10
1.3.3.1 Canonical signal transduction pathways of TGF-β 11
1.3.3.2 Non-canonical signal transduction pathways of TGF-β 12
1.3.4 The effect of TGF-β1 on dental cells 13
1.4 Differentiation related markers 13
1.4.1 Osterix (OSX, SP7) 13
1.4.2 Nestin 14
1.4.3 Vimentin 16
1.4.4 N-cadherin 17
1.4.5 Connective tissue growth factor 18
1.4.6 Cementum protein 1 (CEMP1) 19
1.4.7 Cementum attachment protein (CAP) 20
1.4.8 Plasminogen activator inhibitor-1 (PAI-1) 21
Chapter II. The purpose of the study 23
Chapter III. Materials and methods 24
3.1 Materials 24
3.2 Culture of human apical papilla cells 26
3.3 Reverse transcription-polymerase chain reaction(RT-PCR) 26
3.3.1 Total RNA isolation 27
3.3.2 RNA quantification 29
3.3.3 Reverse transcription (RT) 29
3.3.4 Polymerase chain reaction (PCR) 30
3.4 Western blot 31
3.4.1 Protein extraction 32
3.4.2 Protein quantification 33
3.4.3 Sodium dodecyl sulfate-polyarylamide gel electrophoresis
(SDS-PAGE) 34
3.4.4 Transfer gel 35
3.4.5 Blocking and antibody hybridization 35
3.4.6 Chemiluminescence photography 36
3.5 Immunofluorescent (IF) observation 36
Chapter IV. Results 40
4.1 Morphological change of human apical papilla cells 40
4.2 Effects of different concentrations of TGF-β1 on human apical papilla cells 40
4.2.1 Expressions of ALK5 mRNA and p-Smad2 protein in TGF-β1 exposed cells 40
4.2.2 Expressions of osterix mRNA and protein in TGF-β1 exposed cells 41
4.2.3 Expressions of nestin mRNA, protein and immunofluorescence staining in TGF-β1 exposed cells 41
4.2.4 Expression of vimentin protein in TGF-β1 exposed cells 41
4.2.5 Expressions of N-cadherin mRNA and protein in TGF-β1 exposed cells 42
4.2.6 Expressions of CTGF mRNA and protein in TGF-β1 exposed cells 42
4.2.7 Expressions of mRNA of CEMP1 and mRNA and protein of CAP in TGF-β1 exposed cells 43
4.2.8 Expression of PAI-1 mRNA in TGF-β1 exposed cells 43
4.3 Effect of TGF-β1 with ALK5-Smad2 inhibitor SB431542 on human apical papilla cells 43
4.3.1 Effect of TGF-β1 on ALK5 and p-Smad2 expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 44
4.3.2 Effect of TGF-β1 on osterix expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 44
4.3.3 Effect of TGF-β1 on nestin expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 44
4.3.4 Effect of TGF-β1 on vimentin expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 45
4.3.5 Effect of TGF-β1 on N-cadherin expression with ALK-Smad2 inhibitor SB431542 in human apical papilla cells 45
4.3.6 Effect of TGF-β1 on CTGF expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 45
4.3.7 Effect of TGF-β1 on CEMP1 and CAP expressions with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 46
4.3.8 Effect of TGF- β1 on PAI-1 expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 46
Chapter V. Discussion 47
Chapter VI. Conclusion 55
References 56

Appendix
App.1. A schematic representation of TGF-β superfamily. 68
App.2. A schematic representation of TGF-β different forms occurring during synthesis, secretion, and activation. 69
App.3. TGF-β1 associated intracellular canonical and non-canonical signaling pathways. 70
App.4. TGF-β1 signaling pathways. 71
App.5. Hypothesis of the study 72
App.6. A predicted signaling flow chart to decipher how TGF-β1 affects the expression of each marker. . 73

Tables
Table 1. PCR primer sequences 74
Table 2. Protocol of western blot protein extraction buffer 75
Table 3. Protocol for SDS-PAGE 75
Table 4a. Protocol for western blot SDS-PAGE running buffer 77
Table 4b. Protocol for western blot SDS-PAGE transfer buffer 77
Table 4c. Protocol for western blot tween TBS 77
Table 5. Western blot primary antibodies. 78

Figures
Figure 1. Apical papilla (I-Hua Wu, 2011) 79
Figure 2A. Morphological change of human apical papilla cells (100x magnification) 80
Figure 2B. Morphological change of human apical papilla cells (100x magnification) 81
Figure 3. Expressions of ALK5 mrna and p-Smad2 protein in TGF-β1 exposed cells 82
Figure 4. Expressions of osterix mRNA and protein in TGF-β1 exposed cells 83
Figure 5. Expressions of nestin mRNA and protein in TGF-β1 exposed cells 84
Figure 6. Expressions of vimentin protein in TGF-β1 exposed cells 85
Figure 7. Expressions of N-cadherin mRNA and protein in TGF-β1 exposed cells 86
Figure 8. Expressions of CTGF mRNA and protein in TGF-β1 exposed cells 87
Figure 9. Expressions of mRNA of CEMP1 and mRNA and protein of CAP in TGF-β1 exposed cells 88
Figure 10. Expressions of PAI-1 mrna in TGF-β1 exposed cells 89
Figure 11. Effect of TGF-β1 on ALK5 and p-Smad2 expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 90
Figure 12. Effect of TGF-β1 on osterix expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 91
Figure 13. Effect of TGF-β1 on nestin expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 92
Figure 14. Effect of TGF-β1 on vimentin expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 93
Figure 15. Effect of TGF-β1 on N-cadherin expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 94
Figure 16. Effect of TGF-β1 on CTGF expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 95
Figure 17. Effect of TGF-β1 on CEMP1 and CAP expressions with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 96
Figure 18. Effect of TGF-β1 on PAI-1 expression with ALK5-Smad2 inhibitor SB431542 in human apical papilla cells 97
Figure 19A. Immunofluorescence staining result. Effect of TGF-β1 on expression nestin in human apical papilla cells(100X). 98
Figure 19B. Immunofluorescence staining result. Effect of TGF-β1 on expression nestin in human apical papilla cells(400X). 99
Figure 20A. Immunofluorescence staining result. Effect of TGF-β1 on expression vimentin in human apical papilla cells(100X). 100
Figure 20B. Immunofluorescence staining result. Effect of TGF-β1 on expression vimentin in human apical papilla cells(400X). 101
Figure 21A. Immunofluorescence staining result. Effect of TGF-β1 on expression N-cadherin in human apical papilla cells(100X). 102
Figure 21B. Immunofluorescence staining result. Effect of TGF-β1 on expression N-cadherin in human apical papilla cells(400X). 103
Figure 22A. Immunofluorescence staining result. Effect of TGF-β1 on expression of CTGF human apical papilla cells(100X). 104
Figure 22B. Immunofluorescence staining result. Effect of TGF-β1 on expression of CTGF in human apical papilla cells(400X). 105
Figure 23A. Immunofluorescence staining result. Effect of TGF-β1 on expression CAP in human apical papilla cells(100X). 106
Figure 23B. Immunofluorescence staining result. Effect of TGF-β1 on expression CAP in human apical papilla cells(400X). 107
Figure 24A. Effect of 10 ng/ml TGF-β1 with pretreatment 1, 2.5 µm SB431542 on expression of nestin in human apical papilla cells(100X). 108
Figure 24B. Immunofluorescence staining result. Effect of 10 ng/ml TGF-β1 with pretreatment 1, 2.5 µm SB431542 on expression nestin in human apical papilla cells (400X). 109
Figure 25A. Effect of 10 ng/ml TGF-β1 with pretreatment 1, 2.5 µm SB431542 on expression N-cadherin in human apical papilla cells(100X). 110
Figure 25B. Immunofluorescence staining result. Effect of 10 ng/ml TGF-β1 with pretreatment 1, 2.5 µm SB431542 on expression N-cadherin in human apical papilla cells(400X). 111
Figure 26A. Effect of 10 ng/ml TGF-β1 with pretreatment 1, 2.5 µm SB431542 on expression CTGF in human apical papilla cells(100X). 112
Figure 26B. Immunofluorescence staining result. Effect of 10 ng/ml TGF-β1 with pretreatment 1, 2.5 µm SB431542 on expression CTGF in human apical papilla cells(400X). 113
dc.language.isoen
dc.subject轉化生長因子β1zh_TW
dc.subject經典訊號傳遞路徑zh_TW
dc.subject抑制劑zh_TW
dc.subject分化相關標誌物zh_TW
dc.subject人類牙根尖細胞zh_TW
dc.subjectALK5/Smad2 signaling pathwayen
dc.subjecthuman apical papilla cellsen
dc.subjectdifferentiation related markersen
dc.subjectSB431542en
dc.subjectinhibitoren
dc.subjectTGF-β1en
dc.titleTGF-β1對於人類牙根尖細胞分化的影響:ALK5/Smad2訊息傳遞路徑的角色zh_TW
dc.titleEffect of TGF-β1 on the Differentiation of Human Apical Papilla Cells: Role of ALK5/Smad2 Signalingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃富美,張美姬(Mei-Chi Chang)
dc.subject.keyword轉化生長因子β1,人類牙根尖細胞,分化相關標誌物,抑制劑,經典訊號傳遞路徑,zh_TW
dc.subject.keywordTGF-β1,human apical papilla cells,differentiation related markers,SB431542,inhibitor,ALK5/Smad2 signaling pathway,en
dc.relation.page113
dc.identifier.doi10.6342/NTU201802005
dc.rights.note有償授權
dc.date.accepted2018-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
11.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved