請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71142完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉瑞芬 | |
| dc.contributor.author | Ming-Wei Lai | en |
| dc.contributor.author | 賴名威 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:55:13Z | - |
| dc.date.available | 2023-08-02 | |
| dc.date.copyright | 2018-08-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-28 | |
| dc.identifier.citation | Ah-Fong, A.M.V., Bormann-Chung, C.A., and Judelson, H.S. 2008. Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet. Biol. 45: 1197–1205.
Apel-Birkhold, P. and Walton, J. 1996. Cloning, disruption, and expression of two endo-beta 1, 4-xylanase genes, XYL2 and XYL3, from Cochliobolus carbonum. Appl. Envir. Microbiol. 62: 4129–4135. Bailey, B.A., Dean, J.F., and Anderson, J.D. 1990. An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves. Plant Physiol. 94: 1849–1854. Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972–977. Beliën, T., Van Campenhout, S., Van Acker, M., and Volckaert, G. 2005. Cloning and characterization of two endoxylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against endoxylanase inhibitors from wheat. Biochem. Biophys. Res. Commun. 327: 407–414. Le Berre, J.Y., Engler, G., and Panabières, F. 2008. Exploration of the late stages of the tomato-Phytophthora parasitica interactions through histological analysis and generation of expressed sequence tags. New Phytol. 177: 480–492. Blackman, L.M., Cullerne, D.P., and Hardham, A.R. 2014. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 15: 785. Blackman, L.M., Cullerne, D.P., Torreña, P., Taylor, J., and Hardham, A.R. 2015. RNA-Seq analysis of the expression of genes encoding cell wall degrading enzymes during infection of lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One 10: e0136899. Boller, T. and Felix, G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60: 379–406. Bottin, A., Larche, L., Villalba, F., Gaulin, E., Esquerré-Tugayé, M.T., and Rickauer, M. 1999. Green fluorescent protein (GFP) as gene expression reporter and vital marker for studying development and microbe-plant interaction in the tobacco pathogen Phythphthora parasitica var. nicotianae. FEMS Microbiol. Lett. 176: 51–56. Bretthauer, R.K. and Castellino, F.J. 1999. Glycosylation of Pichia pastoris-derived proteins. Biotechnol. Appl. Biochem. 30 ( Pt 3): 193–200. Brito, N., Espino, J.J., and González, C. 2006. The endo-beta-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol. Plant-Microbe Interact. 19: 25–32. Brouwer, H., Coutinho, P.M., Henrissat, B., and deVries, R.P. 2014. Carbohydrate-related enzymes of important Phytophthora plant pathogens. Fungal Genet. Biol. 72: 192-200 Brown, R.D., Mattoccia, E., and Tocchini-Valentini, G.P. 1972. On the role of RNA amplification in dsRNA-triggered gene silencing. Acta Endocrinol Suppl 168: 307–318. Calero-Nieto, F., DiPietro, A., Roncero, M.I.G., and Hera, C. 2007. Role of the transcriptional activator xlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Mol. Plant-Microbe Interact. 20: 977–985. Chang, Y.H., Yan, H.Z., and Liou, R.F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16: 123–136. Chaparro-Garcia, A., Wilkinson, R.C., Gimenez-Ibanez, S., Findlay, K., Coffey, M.D., Zipfel, C., Rathjen, J.P., Kamoun, S., and Schornack, S. 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One 6: e16608. Choi, J., Kim, K.-T., Jeon, J., and Lee, Y.-H. 2013. Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and oomycetes. BMC Genomics 14 Suppl 5: S7. Collins, T., Gerday, C., and Feller, G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3–23. Cooper, R.M., Longman, D., Campbell, A., Henry, M., and Lees, P.E. 1988. Enzymic adaptation of cereal pathogens to the monocotyledonous primary wall. Physiol. Mol. Plant Pathol. 32: 33–47. Cvitanich, C. and Judelson, H.S. 2003. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr. Genet. 42: 228–235. Denecke, J., DeRycke, R., and Botterman, J. 1992. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 11: 2345–2355. Dong, L., Zhu, X., Cui, H., Ojika, M., Wang, R., and Liu, H. 2015. Establishment of the straightforward electro-transformation system for Phytophthora infestans and its comparison with the improved PEG/CaCl2 transformation. J. Microbiol. Methods 112: 83–86. Eckhard, K., Norbert, G., and Klaus, W. 2018. SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins. FEBS Lett. 170: 81–84. Erwin, D.C. and Ribeiro, O.K. 1996. Phytophthora Diseases Worldwide (APS Press: St Paul, Minnesota). Fang, Y. and Tyler, B.M. 2016. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol. Plant Pathol. 17: 127–139. Ferrari, S. 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4: 1–9. Furman-Matarasso, N., Cohen, E., Du, Q., Chejanovsky, N., Hanania, U., and Avni, A. 1999. A point mutation in the ethylene-inducing xylanase elicitor inhibits the beta-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol. 121: 345–351. Gaulin, E. 2002. The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J. Cell Sci. 115: 4565–4575. Gaulin, E., Haget, N., Khatib, M., Herbert, C., Rickauer, M., and Bottin, A. 2007. Transgenic sequences are frequently lost in Phytophthora parasitica transformants without reversion of the transgene-induced silenced state. Can. J. Microbiol. 53: 152–157. Gindullis, F., Peffer, N.J., and Meier, I. 1999. MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope. Plant Cell 11: 1755–1767. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227. Gómez-Gómez, E., Ruíz-Roldán, M.C., DiPietro, A., Roncero, M.I.G., and Hera, C. 2002. Role in pathogenesis of two endo-beta-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genet. Biol. 35: 213–222. Govrin, E.M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necotrophic pathogen Botrytis cinerea. Curr. Biol. 10: 751–757. Hardham, A.R. 2007. Cell biology of plant-oomycete interactions. Cell. Microbiol. 9: 31–39. Hartley, J.L., Temple, G.F., and Brasch, M.A. 2000. DNA cloning using in vitro site-specific recombination. Genome Res. 10: 1788–1795. Huitema, E., Smoker, M., and Kamoun, S. 2011. A straightforward protocol for electro-transformation of Phytophthora capsici zoospores. Methods Mol. Biol. 712: 129–135. Hwu, F.Y., Lai, M.W., and Liou, R.F. 2017. PpMID1 plays a role in the asexual development and virulence of Phytophthora parasitica. Front. Microbiol. 8: 1–14. Jones, J.D.G. and Dangl, J.L. 2006. The plant immune system. Nature 444: 323–329. Joosten, M.H.A.J. 2012. Isolation of apoplastic fluid from leaf tissue by the vacuum infiltration-centrifugation technique. Methods Mol Biol. 835: 603–610. Judelson, H.S., Ah-Fong A.M., Aux, G., Avrova, A.O., Bruce, C., Cakir, C., da Cunha, L., Grenville-Briggs, L., Latijnhouwers, M., Ligterink, W., Meijer, H.J., Roberts, S., Thurber, C.S., Whisson, S.C., Birch, P.R., Govers, F., Kamoun, S., van West, P., and Windass, J. 2008. Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol. Plant-Microbe Interact. 21: 433–447. Judelson, H.S. and Michelmore, R.W. 1991. Transient expression of genes in the oomycete Phytophthora infestans using Bremia lactucae regulatory sequences. Curr. Genet. 19: 453–459. Judelson, H.S., Narayan, R., Fong, A.M.V.A., Tani, S., and Kim, K.S. 2007. Performance of a tetracycline-responsive transactivator system for regulating transgenes in the oomycete Phytophthora infestans. Curr. Genet. 51: 297–307. Judelson, H.S., Tyler, B.M., and Michelmore, R.W. 1991. Transformation of the oomycete pathogen, Phytophthora infestans. Mol. Plant-Microbe Interact. 4: 602–607. Judelson, H.S. and Whittaker, S.L. 1995. Inactivation of transgenes in Phytophthora infestans is not associated with their deletion, methylation, or mutation. Curr. Genet. 28: 571–579. Kamoun, S. 2003. Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2: 191–199. Karimi, M., Depicker, A., and Hilson, P. 2007. Recombinational cloning with plant gateway vectors. Plant Physiol. 145: 1144–1154. Karimi, M., Inzé, D., and Depicker, A. 2002. GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7: 193–195. Katzen, F. 2007. Gateway ® recombinational cloning: a biological operating system. Expert Opin. Drug Discov. 2: 571–589. Kubicek, C.P., Starr, T.L., and Glass, N.L. 2014. Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52: 427–451. Kumar, S., Stecher, G., and Tamura, K. 2016a. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. 33: 1870–1874. Kumar, V., Marín-Navarro, J., and Shukla, P. 2016b. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J. Microbiol. Biotechnol. 32: 1–10. Lacorte, C., Ribeiro, S.G., Lohuis, D., Goldbach, R., and Prins, M. 2010. Potatovirus X and Tobacco mosaic virus-based vectors compatible with the Gateway cloning system. J. Virol. Methods 164: 7–13. Lagaert, S., Beliën, T., and Volckaert, G. 2009. Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Semin. Cell Dev. Biol. 20: 1064–1073. Lea, I.A., Richardson, R.T., Widgren, E.E., and O’Rand, M.G. 1996. Cloning and sequencing of cDNAs encoding the human sperm protein, Sp17. Biochim. Biophys. Acta - Gene Struct. Expr. 1307: 263–266. Lee, S.-J. and Rose, J.K.C. 2010. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal. Behav. 5: 769–772. Lehtinen, U. 1993. Plant cell wall degrading enzymes of Septoria nodorum. Physiol. Mol. Plant Pathol. 43: 121–134. Lotan, T. and Fluhr, R. 1990. Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction. Plant Physiol. 93: 811–7. Lu, R., Martin-Hernandez, A.M., Peart, J.R., Malcuit, I., and Baulcombe, D.C. 2003. Virus-induced gene silencing in plants. Methods 30: 296–303. Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B.M., and Wang, Y. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27: 2057–2072. Manavathu, E.K., Suryanarayana, K., Hasnain, S.E., and Leung, W.C. 1988. DNA-mediated transformation in the aquatic filamentous fungus Achlya ambisexualis. J. Gen. Microbiol. 134: 2019–2028. Marsden, W.L., Gray, P.P., Nippard, G.J., and Quinlan, M.R. 1982. Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J. Chem. Technol. Biotechnol. 32: 1016–1022. Mcleod, A., Fry, B.A., Zuluaga, A.P., Myers, K.L., and Fry, W.E. 2008. Toward improvements of oomycete transformation protocols. J. Eukaryot. Microbiol. 55: 103–109. Meng, Y., Zhang, Q., Ding, W., and Shan, W. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5: 43–51. Meng, Y., Zhang, Q., Zhang, M., Gu, B., Huang, G., Wang, Q., and Shan, W. 2015. The protein disulfide isomerase 1 of Phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection. Front. Plant Sci. 6: 1–10. Mengiste, T. 2012. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 50: 267–294 Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428. Nguyen, Q.B., Itoh, K., VanVu, B., Tosa, Y., and Nakayashiki, H. 2011. Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol. Microbiol. 81: 1008–1019. Noda, J., Brito, N., and González, C. 2010. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol. 10: 38. Ospina-Giraldo, M.D., Griffith, J.G., Laird, E.W., and Mingora, C. 2010. The CAZyome of Phytophthora spp.: A comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genomics 11: 525. Paës, G., Berrin, J.-G., and Beaugrand, J. 2012. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol. Adv. 30: 564–592. Palm-Forster, M.A.T., Eschen-Lippold, L., Uhrig, J., Scheel, D., and Lee, J. 2017. A novel family of proline/serine-rich proteins, which are phospho-targets of stress-related mitogen-activated protein kinases, differentially regulates growth and pathogen defense in Arabidopsis thaliana. Plant Mol. Biol. 95: 123–140. Petersen, T.N., Brunak, S., vonHeijne, G., and Nielsen, H. 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat Meth 8: 785–786. Poinssot, B., Vandelle, E., Bentéjac, M., Adrian, M., Levis, C., Brygoo, Y., Garin, J., Sicilia, F., Coutos-Thévenot, P., and Pugin, A. 2003. The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol. Plant. Microbe. Interact. 16: 553–564. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., and Amorim, D.S. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591. Qutob, D., Kemmerling, B., Brunner, F., Küfner, I., Engelhardt, S., Gust, A.A., Luberacki, B., Seitz, H.U., Stahl, D., Rauhut, T., Glawischnig, E., Schween, G., Lacombe, B., Watanabe, N., Lam, E., Schlichting, R., Scheel, D., Nau, K., Dodt, G., Hubert, D., Gijzen, M., and Nürnberger, T. 2006. Phytotoxicity and innate immune responses induced by Nep1-Like proteins. Plant Cell 18: 3721–3744. Qutob, D., Kamoun, S., and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 32: 361–373. Richards, T.A., Soanes, D.M., Jones, M.D.M., Vasieva, O., Leonard, G., Paszkiewicz, K., Foster, P.G., Hall, N., and Talbot, N.J. 2011. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc. Natl. Acad. Sci. USA 108: 15258–15263. Ron, M. and Avni, A. 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16: 1604–1615. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y. Sella, L., Gazzetti, K., Faoro, F., Odorizzi, S., D’Ovidio, R., Schäfer, W., and Favaron, F. 2013. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiol. Biochem. 64: 1–10. Shafran, H., Miyara, I., Eshed, R., Prusky, D., and Sherman, A. 2008. Development of new tools for studying gene function in fungi based on the Gateway system. Fungal Genet. Biol. 45: 1147–1154. Shan, W., Marshall, J.S., and Hardham, A.R. 2004. Gene expression in germinated cysts of Phytophthora nicotianae. Mol. Plant Pathol. 5: 317–330. Vetukuri, R.R., Avrova, A.O., Grenville-Briggs, L.J., van West, P., Söderbom, F., Savenkov, E.I., Whisson, S.C., and Dixelius, C. 2011. Evidence for involvement of Dicer-like, Argonaute and histone deacetylase proteins in gene silencing in Phytophthora infestans. Mol. Plant Pathol. 12: 772–785. Vijn, I., Govers, F., Irma, V., and Francine, G. 2003. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol. Plant Pathol. 4: 459–467. Walton, J.D. 1994. Deconstructing the cell wall. Plant Physiol. 104: 1113–1118. Wang, Y., Xu, Y., Sun, Y., Wang, H., Qi, J., Wan, B., Ye, W., Lin, Y., Shao, Y., Dong, S., Tyler, B.M., and Wang, Y. 2018. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9: 594. van West, P., Kamoun, S., van’t Klooster, J.W., and Govers, F. 1999. Internuclear gene silencing in Phytophthora infestans. Mol. Cell 3: 339–348. van West, P., Shepherd, S.J., Walker, C.A., Li, S., Appiah, A.A., Grenville-Briggs, L.J., Govers, F., and Gow, N.A.R. 2008. Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 154: 1482–1490. Whisson, S.C., Avrova, A.O., van West, P., and Jones, J.T. 2005. A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol. Plant Pathol. 6: 153–63. Wong, K.K., Tan, L.U., and Saddler, J.N. 1988. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52: 305–317. Wu, C.H., Yan, H.Z., Liu, L.F., and Liou, R.-F. 2008. Functional characterization of a gene family encoding polygalacturonases in Phytophthora parasitica. Mol. Plant-Microbe Interact. 21: 480–489. Wu, D., Navet, N., Liu, Y., Uchida, J., and Tian, M. 2016. Establishment of a simple and efficient Agrobacterium-mediated transformation system for Phytophthora palmivora. BMC Microbiol. 16: 204. Wu, S.C., Halley, J.E., Luttig, C., Fernekes, L.M., Gutiérrez-Sanchez, G., Darvill, A.G., and Albersheim, P. 2006. Identification of an endo-beta-1,4-D-xylanase from Magnaporthe grisea by gene knockout analysis, purification, and heterologous expression. Appl. Environ. Microbiol. 72: 986–993. Wu, S.C., Ham, K.S., Darvill, A.G., and Albersheim, P. 1997. Deletion of two endo-β-1,4-xylanase genes reveals additional isozymes secreted by the rice blast fungus. Mol. Plant-Microbe Interact. 10: 700–708. Yan, H.Z. and Liou, R.F. 2005. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 42: 339–350. Yan, H.Z. and Liou, R.F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 43: 430–438. Yi, S.H. 2012. Characterization of NIPRa, a pathogenesis-related protein from Solanum lycopersicum. Master thesis. National Taiwan University, Taipei, Taiwan. Yufeng, F., Linkai, C., Biao, G., Felipe, A., and Tyler, B.M. 2017. Efficient genome editing in the oomycete Phytophthora sojae using CRISPR/Cas9. Curr. Protoc. Microbiol. 44: 21A.1.1-21A.1.26. Zhang, L., Kars, I., Essenstam, B., Liebrand, T.W.H., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., van den Ackerveken, G., and van Kan, J.A.L. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164: 352–364. Zhang, M., Meng, Y., Wang, Q., Liu, D., Quan, J., Hardham, A.R., and Shan, W. 2012. PnPMA1, an atypical plasma membrane H+-ATPase, is required for zoospore development in Phytophthora parasitica. Fungal Biol. 116: 1013–1023. Zhang, M., Wang, Q., Xu, K., Meng, Y., Quan, J., and Shan, W. 2011. Production of dsRNA sequences in host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen Phytophthora parasitica. PLoS One 6(11): e28114 Zhao, Z., Liu, H., Wang, C., and Xu, J.R. 2013. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14: 274. Zhou, B.J., Jia, P.S., Gao, F., and Guo, H.S. 2012. Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae. Mol. Plant. Microbe. Interact. 25: 964–975. Zhu, W., Ronen, M., Gur, Y., Minz-Dub, A., Masrati, G., Ben-Tal, N., Savidor, A., Sharon, I., Eizner, E., Valerius, O., Braus, G.H., Bowler, K., Bar-Peled, M., and Sharon, A. 2017. BcXYG1, a secreted xyloglucanase from Botrytis cinerea induces cell death and triggers plant defense. Plant Physiol. 175: 438–456. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71142 | - |
| dc.description.abstract | 病原菌侵染植物寄主時,會分泌各種細胞壁分解酵素以促進侵染進程,其中包含木聚醣酶 (endo-beta-1,4-xylanase),能夠水解半纖維素的主要成分-長鏈木聚醣,達到破壞植物細胞壁的目的。本研究探討木聚醣酶在疫病菌(Phytophthora parasitica)致病過程中所扮演的角色,將疫病菌木聚醣酶基因家族中共四個基因進行選殖,並將之個別命名為ppxyn1、ppxyn2、ppxyn3與ppxyn4。胺基酸序列分析顯示這四個疫病菌木聚醣酶皆具有木聚醣酶的保守性酵素活性區,親緣關係分析顯示,有別於真菌木聚醣酶,疫病菌木聚醣酶全都隸屬於醣苷水解酶家族10 (glycoside hydrolases family 10, GH10)的成員。以嗜甲醇酵母菌(Pichia pastoris)表現重組蛋白進行測試,證實ppxyn1、ppxyn2及ppxyn4重組蛋白皆具有水解樺木木聚醣之酵素活性,並且在耐熱特性及所需最適反應條件(包括酸鹼性及作用溫度等)皆有不同。以定量反轉錄-聚合酶連鎖反應測定基因表現情形,發現ppxyn1及ppxyn2在疫病菌感染番茄葉片初期即大量表現,ppxyn3在靜止子(cyst)表現量較高,而ppxyn4則在萌發靜止子被誘導表現。為進一步了解疫病菌木聚醣酶在疫病菌致病過程的的重要性,本研究應用Gateway選殖系統改造靜默載體,並建立疫病菌轉型系統,可以雙股 RNA 驅動疫病菌之基因靜默。分析結果顯示ppxyn1及ppxyn2靜默轉型株在圓葉煙草(Nicotiana benthamiana)或番茄(Solanum lycopersicum)上所造成的病徵皆有減弱現象,顯示ppxyn1及ppxyn2是疫病菌侵染植物時重要的細胞壁分解酵素。此外,利用農桿菌注入法所進行的分析發現ppxyn1及ppxyn3在圓葉煙草造成壞死斑,ppxyn2則在煙草(Nicotiana tabacum cv. Xanthi)上造成壞死斑,顯示這些基因可能具有導致細胞壞死的活性。 | zh_TW |
| dc.description.abstract | To infect their host plants, pathogens need to secret a variety of cell wall degrading enzymes, including endo-beta-1,4-xylanase that is crucial for the initial breakdown of xylan, the major hemicellulose component of the plant cell wall. To investigate the role of xylanase in Phytophthora parasitica, an oomyceteous plant pathogen with a wide host range, four genes encoding endo-b-1,4-xylanase, which named ppxyn1, ppxyn2, ppxyn3, and ppxyn4, were cloned and characterized respectively. Analysis of the deduced amino acid sequences indicated that all these genes contain active site signature for xylanase and belong to glycoside hydrolases family 10 (GH10). Phylogenic analysis demonstrated that all these genes form a cluster distinct from xylanases of the fungal pathogens. Analysis of the recombinant proteins obtained from the yeast Pichia pastoris indicated that ppxyn1, ppxyn2, and ppxyn4 encode a functional protein with a hydrolase activity toward birchwood xylan. However, each protein behaved differently regarding to their thermostability and conditions for optimal enzymatic activity. Analysis by quantitative reverse transcriptase-PCR indicated that ppxyn1 and ppxyn2 were up-regulated upon infection of tomato leaves by P. parasitica, suggestive of their involvement in the process of host infection. In contrast, ppxyn3 was highly expressed in cysts and ppxyn4 in germinating cysts. To further investigate the role of ppxyn genes in P. parasitica, silencing vectors were modified to facilitate Gateway cloning and CaCl2¬¬-PEG-mediated protoplast transformation method was established, which allow dsRNA mediated gene silencing in this pathogen. Both ppxyn1- and ppxyn2-silenced transformants show reduced virulence on tobacco (Nicotiana benthamiana) and tomato (Solanum lycopersicum) plants. These results demonstrate the crucial role of xylanase-encoding ppxyn1 and ppxyn2 in the infection process of P. parasitica. In addition, transient expression of ppxyn1 and ppxyn3 by agroinfiltration caused necrosis on the leaves of N. benthamiana. As well, ppxyn2 caused necrosis on the leaves of Nicotiana tabacum cv. Xanthi. These results suggest that these genes might have necrotizing activities. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:55:13Z (GMT). No. of bitstreams: 1 ntu-107-F95633016-1.pdf: 53138079 bytes, checksum: 92732a8bb8af394d571811bd176337e1 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書......i
摘要......ii Abstract......iii Contents......v Chapter I Introduction......1 I-1 Xylanase (Beta-1,4-D-endoxylanase; EC 3.2.1.8)......1 I-2 The roles of xylanase in pathogenicity of plant fungal pathogens......2 I-3 The role of CWDEs in plant immunity......3 I-4 The role of xylanase in plant immunity......5 I-5 Phytophthora parasitica and establishment of methods for its transformation......6 I-6 Gateway cloning system......9 I-7 The aims of this study......10 Chapter II Materials and Methods......11 II-1 Phytophthora parasitica culture and inoculation......11 II-2 Growth condition of plant materials......12 II-3 Molecular cloning and sequence analysis of genes encoding xylanase in Phytophthora parasitica......12 II-4 Southern blot hybridization......13 II-5 Expression of recombinant protein in Pichia pastoris......13 II-6 Expression of recombinant protein in Escherichia coli......14 II-7 Assay of the xylanase activity......15 II-8 Isolation of total RNAs......16 II-9 Quantitative reverse transcriptase-PCR (qRT-PCR)......16 II-10 Construction of the Silencing Vector......17 II-11 Construction of vectors for dsRNA-mediated gene silencing......18 II-12 Polyethylene glycerol (PEG)-mediated transformation of Phytophthora parasitica......18 II-13 Pathogenicity test......20 II-14 PVX Agro-infection Assay......21 II-15 Protein transient expression by agroinfiltration......21 II-16 Isolation of apoplastic fluid......22 Chapter III Establishment of a method for dsRNA mediated gene silencing in Phytophthora parasitica......23 III-1 Establishment of methods for gene overexpression in Phytophthora parasitica......23 III-2 Establishment of methods for double-stranded RNA (dsRNA)-mediated gene silencing in Phytophthora parasitica......24 III-3 Discussion......26 Chapter IV ppxyn1 and ppxyn2 play important roles in pathogenesis of Phytophthora parasitica......31 IV-1 Molecular cloning and sequence analysis of a xylanase gene family from Phytophthora parasitica......31 IV-2 Assay for the enzymatic activity of ppxyn recombinant proteins......33 IV-3 Expression pattern of ppxyn in different life stages of Phytophthora parasitica......35 IV-4 The role of ppxyn in the pathogenicity of Phytophthora parasitica......36 IV-5 Discussion......39 Chapter V Investigation of the roles of ppxyns in plant immunity......44 V-1 Necrotizing activity assay for the ppxyn genes by transient protein expression......44 V-2 Discussion......45 Reference......49 Tables......66 Table 1. List of oligonucleotide primers used in this study......66 Table 2. Characteristics of proteins encoded by the xylanase-encoding genes of Phytophthora parasitica......68 Table 3. Amino acid composition of each PPXYN......69 Figures and Legends......70 Figure 1. Map of the vectors for double-stranded RNA mediated gene silencing in Phytophthora parasitica.......71 Figure 2. Expression of green fluoresces protein by Phytophthora parasitica transformants carrying pEX::eGFP.......73 Figure 3. Reverse transcriptase-PCR to amplify partial sequences of putative xylanase-encoding genes.......75 Figure 4. Screening of the genomic library of Phytophthora parasitica for putative xylanase-encoding genes.......76 Figure 5. Multiple sequence alignment of nucleotide sequences from ppxyn1, ppxyn2, ppxyn3, and ppxyn4.......77 Figure 6. Genomic Southern blot analysis of Phytophthora parasitica.......78 Figure 7. Multiple sequence alignment of deduced amino acid sequences from ppxyn1, ppxyn2, ppxyn3, and ppxyn4.......79 Figure 8. Phylogenetic analysis of the xylanase genes.......80 Figure 9. The electrophoretic pattern of ppxyn recombinant proteins.......81 Figure 10. Enzymatic activity assays of ppxyn recombinant proteins.......82 Figure 11. Analysis of the enzymatic activity of ppxyn3 and ppxyn4 recombinant proteins obtained from Pichia pastoris by using different substrates.......84 Figure 12. The electrophoretic pattern of ppxyn recombinant proteins obtained from Escherichia coli.......86 Figure 13. Thermostability and durability of ppxyn recombinant proteins.......87 Figure 14. Quantification of the transcripts of xylanase genes by real-time quantitative reverse transcriptase-PCR.......88 Figure 15. PCR analysis of putative ppxyn1- and ppxyn2-silenced transformants of Phytophthora parasitica.......90 Figure 16. The morphology of sporangia produced by ppxyn1- and ppxyn2-silenced transformants of Phytophthora parasitica.......91 Figure 17. Downregulation of ppxyn1 and ppxyn2 reduced virulence in Phytophthora parasitica.......93 Figure 18. ppxyn1- and ppxyn2-silenced transformants showed reduced virulence toward Nicotiana benthamiana.......95 Figure 19. Systemic expression of ppxyn genes on Nicotiana benthamiana by agroinfection.......97 Figure 20. Systemic expression of ppxyn genes on Solanum lycopersicum by agroinfection.......99 Figure 21. Transient expression of ppxyn on Nicotiana benthamiana by agroinfiltration.......101 Figure 22. Transient expression of ppxyn on Nicotiana tabacum and Solanum lycopersicum by agroinfiltration.......103 Supplementary figure 1. Map of the plasmid construct for recombinant protein expression in Pichia pastoris.......105 Supplementary figure 2. Map of the plasmid construct for recombinant protein expression in Escherichia coli.......106 Supplementary figure 3. Construction of binary vector for protein expression by agroinfection.......107 Supplementary figure 4. Construction of binary vector for protein expression by agroinfiltration.......108 | |
| dc.language.iso | en | |
| dc.subject | 木聚醣? | zh_TW |
| dc.subject | 疫病菌 | zh_TW |
| dc.subject | 致病性 | zh_TW |
| dc.subject | 細胞壁分解酵素 | zh_TW |
| dc.subject | 壞死 | zh_TW |
| dc.subject | cell wall degrading enzyme | en |
| dc.subject | Phytophthora parasitica | en |
| dc.subject | virulence | en |
| dc.subject | necrosis | en |
| dc.subject | xylanase | en |
| dc.title | 疫病菌木聚醣酶基因的選殖與功能性分析 | zh_TW |
| dc.title | Cloning and functional characterization of genes encoding xylanase in Phytophthora parasitica | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曾顯雄,沈偉強,李敏惠,林乃君 | |
| dc.subject.keyword | 木聚醣?,疫病菌,致病性,細胞壁分解酵素,壞死, | zh_TW |
| dc.subject.keyword | xylanase,Phytophthora parasitica,virulence,cell wall degrading enzyme,necrosis, | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU201802052 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 51.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
