請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71137完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-chun Chang) | |
| dc.contributor.author | Hung-Wei Liu | en |
| dc.contributor.author | 劉弘煒 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:54:56Z | - |
| dc.date.available | 2023-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-28 | |
| dc.identifier.citation | Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater., vol. 7(6), pp. 442453, 2008.
Barnes, W. L., A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature., vol. 424, pp. 824–830, 2003. Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994. Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE. Trans. Microwave Theory Tech., vol. 34, pp. 1104–1113, 1986. Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956. Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded waveguides: I-Finite-element analysis,” IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 1124-1131, 1970. Chen, H., Y. Gao, H. Zhang, L. Liu, H. Yu, H. Tian, J. Li, “Transmission-electron- microscopy study on fivefold twinned silver nanorods.” The Journal of Physical Chemistry B, vol. 108(32), pp. 12038–12043, 2004. Chen, H. J., Hybrid-Element FEM Based Complex Node Solver for Optical Waveguides with Triangular-Mesh Generator. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. Chen, H. P., Modal Analysis of Triangle-Shaped and Silver-Nanowire Waveg- uides Using a Full-vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2015. Chiang, Y. C., Y. P. Chiou, and H. C. Chang, “Improved full-vectorial finite- difference mode solver for optical waveguides with step-index profiles,” J. Light- wave Technol., vol. 20, pp. 1609–1618, 2002. Chung, C. C., Analysis of Slot and Triangular-Shaped Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2008. Dong, C. H., X. F. Ren, R. Yang, J. Y. Duan, J. G. Guan, G. C. Guo, and G. P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett., vol. 95, 221109, 2009. Gramotnev, D. K., and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon., vol. 4, pp. 83–91, 2010. Hadley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol., vol. 13, pp. 465–469, 1995. Hsu, H. M., “Modal Analysis of Pentagonal and Square Silver Nanowires Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method.” M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, August 2017. Hsu, S. M., “Full-Vectorial Finite Element Beam Propagation Method Based on Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems.” M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. Johnson, P. B., and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, pp. 4370–4379, 1972. Kauranen, M., and A. V. Zayats, Nonlinear plasmonics, Nat. Photonics, vol. 6(11), pp. 737748, 2012. Koshiba, M., and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol., vom. 18, pp. 737–743, 2000. Lee, J.-F., D.-K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides using tangential vector finite elements,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. Lee, L. F., Finite element method with curvilinear hybrid edge/nodal triangular shape element for optical waveguide problems. M. S. Thesis, Graduate Institute of Com- munication Engineering, National Taiwan University, Taipei, Taiwan, June 2002. Li, Q., and M. Qiu, “Plasmonic wave propagation in silver nanowires: guiding modes or not?,” Opt. Express, vol. 21, pp. 8587–8595, 2013. Lusse, P., P. Stuwe, J. Schu¨le, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by an new finite difference method,” J. Lightwave Technol., vol. 12, pp. 487-493, 1994. Peng, C. H., Analysis of Photinic Crystal Fibers Using a Full-Vectorial Imaginary- Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2007. Prodan, E., C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures.” Science, vol. 302, pp. 419–422, 2003 Saitoh, K., and M. Koshiba, “Approximate scalar finite-element beam-propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol., vol. 19, pp. 786–792, 2001. Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927–933, 2002. Song, M., A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, G. Colasdes-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires.” ACS nano, vol. 5(7), pp. 5874–5880, 2011. Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, “Analysis of the spectral index method for vector modes of rib waveguides,” Inst. Elec. Eng. Proc. -J., vol. 137, pp. 21–26, 1990. Sun, S., H. T. Chen, W. J. Zheng, G. Y. Guo, “Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double- nanowire systems.” Opt. Express, vol. 21, pp. 14591–14605, 2013. Sun, X. M., and Y. D. Li, ”Cylindrical silver nanowires: Preparation, structure, and optical properties.” Advanced Materials, vol. 17, pp. 2626–2630, 2005. Sun, Y., B. Mayers, T. Herricks, Y. Xia, ”Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence.” Nano Lett., vol. 3.7, pp. 955–960, 2003. Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett., vol. 22, pp. 475–477, 1997. Teixeira, F. L., and W. C. Chew, “PML-FDTD in cylindrical and spherical grids.” IEEE Microwave Guided Wave Lett., vol. 7, pp. 285–287, 1997. Vernois, G., and S. Fan, “Bends and splitters in metal-dielectric-metal sub-wavelength plasmonic waveguides,” Appl. Phys. Lett., vol. 87, 131102, 2005. Wang, P. H., Modal Analysis of Silver Double-Nanowire Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, January 2017. Yan, M., and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B, vol. 24, pp. 2333–2342, 2007. Yang, H., M. Qiu, and Q. Li, “Identification and control of multiple leaky plasmon modes in silver nanowires,” Laser Photon. Rev., vol. 10, pp. 278–286, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71137 | - |
| dc.description.abstract | 本篇論文中,我們以曲線混合型元素為基底的全向量有限元素虛軸波束傳遞法來分析五角形銀奈米柱波導。當操作波長500到2000奈米的範圍內,我們分析等效折射率、傳播長度和模態場型。一開始我們研究小半徑五角形與圓形銀奈米柱波導之差異。與圓形結構相比,五角形結構的操作波長較長,特定的模態適合應用於訊號傳導。接著我們研究在不同幾何形狀下銀奈米柱波導的光集中強度。最後,在奈米柱半徑增大的情形下,當放在SiO2 基板上時,同時擁有傳播模態和洩漏模態性質的混合洩漏模態會產生。鑲嵌在SiO2 介質裡面時,多個複雜的偶合模態與不同的奈米柱間距衍生出命名的模糊與統一等問題,藉由研究圓形銀奈米柱波導耦合原理,我們探討出具有物理意義和統一性的命名規則並能將此規則應用於五角形銀奈米柱波導。 | zh_TW |
| dc.description.abstract | In this research, we adopt the full-vectorial finite-element imaginary-distance beam propagation method (FE-ID-BPM) based on the hybrid edge/nodal elements and incorporate perfectly matched layers (PMLs) to analyze pentagonal silver nanowire plasmonic waveguides including that immersed in SiO2 and that supported by SiO2 substrate. With the operating wavelengths ranging from 500 nm to 2000 nm, the effective refractive indices, propagation lengths, and mode- field profi les are investigated for different radii and gap widths in this research. The difference between small-radius pentagonal and circular silver nanowire waveguides are first investigated. Compare to circular structures, pentagonal structures possess wider operating
wavelength range and are suitable for signal transmitter devices for certain modes. Next, optical energy concentration due to different geometrical structures of silver nanowires is discussed. Finally, large-radius silver nanowire systems are studied. When supported by a SiO2 substrate, a hybrid leaky mode is observed and certain unique optical properties are calculated. When immersed in SiO2 matrix, the uncertainty of naming the coupled modes occurs. By analyzing the coupling origins, systematical coupled mode naming rules are proposed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:54:56Z (GMT). No. of bitstreams: 1 ntu-107-R05941003-1.pdf: 25775319 bytes, checksum: e59558b72b192c5478993c1b5fa6d121 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Numerical Methods for Waveguide Analysis . . . . . . . . . . . . . . 3 1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 The Finite Element Method, Related Mathematical Formulations, and Simulation Validation 7 2.1 The Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The Finite Element Method and Mode Solver . . . . . . . . . . . . . 10 2.3 The Finite Element Beam Propagation Method . . . . . . . . . . . . 15 2.4 The Finite-Element Imaginary-Distance Beam Propagation Method . 19 2.5 Simulation Validation Result . . . . . . . . . . . . . . . . . . . . . . . 21 3 Different Properties of Surface Plasmon Polaritons in Pentagonal and Circular Silver Nanowire Systems 37 3.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Single Pentagonal Silver Nanowire Immersed in SiO2 . . . . . . . . . 38 3.3 Single Pentagonal Silver Nanowire placed on a SiO2 Substrate . . . . 40 3.4 Double Pentagonal Silver Nanowires Immersed in SiO2 . . . . . . . . 41 3.5 Double Pentagonal Silver Nanowires placed on a SiO2 Substrate . . . 44 3.6 Comparison between Circular Nanowire Waveguides and Pentagonal Nanowire Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Large-Radius Pentagonal Silver Nanowire Waveguide Systems and the Mode Assembling Theory 71 4.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Single Large-Radius Pentagonal waveguide . . . . . . . . . . . . . . . 72 4.3 Double-Large Radius Pentagonal waveguide . . . . . . . . . . . . . . 74 4.4 The Mode Assembling Theory . . . . . . . . . . . . . . . . . . . . . . 77 5 Conclusion 136 Bibliography 139 A 145 B 172 | |
| dc.language.iso | en | |
| dc.subject | 模態命名 | zh_TW |
| dc.subject | 耦合原理 | zh_TW |
| dc.subject | 五角形銀奈米柱 | zh_TW |
| dc.subject | 有限元素虛軸波束傳遞法 | zh_TW |
| dc.subject | 表面電漿 | zh_TW |
| dc.subject | 圓形銀奈米柱 | zh_TW |
| dc.subject | 傳播模態 | zh_TW |
| dc.subject | 洩漏模態 | zh_TW |
| dc.subject | 混合洩漏模態 | zh_TW |
| dc.subject | Hybrid leaky mode | en |
| dc.subject | Surface plasmon polaritons (SPPs) | en |
| dc.subject | Pentagonal silver nanowires | en |
| dc.subject | Circular silver nanowires | en |
| dc.subject | Guiding modes | en |
| dc.subject | Leaky modes | en |
| dc.subject | Finite-element imaginary-distance beam propagation method (FE-IDBPM) | en |
| dc.subject | Mode naming rules | en |
| dc.subject | Mode assembling theory | en |
| dc.title | 以全向量虛軸有限元素波束傳遞法研究五角形銀奈米柱波導及其耦合結構 | zh_TW |
| dc.title | Studies of Pentagonal Silver Nanowires and Their Coupling Structures Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宗哲(Tzong-Jer Yang),張世慧(Shih-Hui Chang) | |
| dc.subject.keyword | 有限元素虛軸波束傳遞法,表面電漿,五角形銀奈米柱,圓形銀奈米柱,傳播模態,洩漏模態,混合洩漏模態,模態命名,耦合原理, | zh_TW |
| dc.subject.keyword | Finite-element imaginary-distance beam propagation method (FE-IDBPM),Surface plasmon polaritons (SPPs),Pentagonal silver nanowires,Circular silver nanowires,Guiding modes,Leaky modes,Hybrid leaky mode,Mode naming rules,Mode assembling theory, | en |
| dc.relation.page | 176 | |
| dc.identifier.doi | 10.6342/NTU201801892 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 25.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
