Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71117
標題: 以主要成份分析法探討貿易流量對匯率之影響
A Study on the Impact of Trading Flows on Exchange Rate Using Principal Component Analysis
作者: Marco Tulio Espinosa Herrera
王正浩
指導教授: 雷立芬(Li-Fen Lei)
關鍵字: 匯率,貿易,主要成份分析法,
Exchange Rate,Trade,Principal Component Analysis,
出版年 : 2018
學位: 碩士
摘要: This work presents a study of the relation between Guatemala's major trading goods and the exchange rate of Guatemalan quetzal (GTQ) against the US dollar (USD). Theoretical and empirical literature suggests that the exchange rate is closely linked to the import and export activity, especially in developing countries like Guatemala. An analysis of the relation between Guatemala's imports and exports and the exchange rate can indicate which goods are the most relevant to the exchange rate and Guatemala's economy in general, as it heavily depends on it. A mathematical model that predicts the values of the exchange rate based on the imports and exports of these goods could help in not only stocks investments but also determine which production sector should be the focus of attention of Guatemala's government.
To achieve these goals, Principal Component Analysis (PCA) is performed on the data provided by both the National Bank of Guatemala (Banguat) and Guatemala's Stock Exchange (BVNSA). This analysis allows us to identify the desired major trading goods and also to identify the degree of importance of each one of them. This information also allows reducing the number of goods from hundreds to around twenty-five, while conserving around 90\% of the data. As a consequence, is possible to generate a linear modeling based on the principal components, to predict the exchange rate based on these goods. Further, is presented how the linear modeling can predict the exchange rate with several examples, and finalize this work by indicating how this study presents the theoretical foundations for a future research intending to create a neuronal network (machine learning) that is capable of performing supervised learning to predict the exchange rate dynamically.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71117
DOI: 10.6342/NTU201801760
全文授權: 有償授權
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.58 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved