請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71114
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 龔源成(Yuancheng Gung) | |
dc.contributor.author | Tong-Pong Wong | en |
dc.contributor.author | 黃棟邦 | zh_TW |
dc.date.accessioned | 2021-06-17T04:53:42Z | - |
dc.date.available | 2023-08-01 | |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-30 | |
dc.identifier.citation | Boatwright, J. (1980). Preliminary body-wave analysis of the St. Elias, Alaska earthquake of February 28, 1979. Bulletin of the Seismological Society of America, 70 (2), 419-436.
Bouchon, M. (1976). Teleseismic body wave radiation from a seismic source in a layered medium. Geophysical Journal International, 47 (3), 515-530. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the earth and planetary interiors, 25 (4), 297-356 Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1-9. Grapenthin, R., Johanson, I., & Allen, R. M. (2014). The 2014 Mw 6.0 Napa earthquake, California: Observations from real‐time GPS‐enhanced earthquake early warning. Geophysical Research Letters, 41 (23), 8269-8276. Gutenberg, B. (1956). The energy of earthquakes. Quarterly Journal of the Geological Society, 112 (1-4), 1-14. Hartzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73 (6A), 1553-1583. Haskell, N. A. (1962). Crustal reflection of plane P and SV waves. Journal of Geophysical Research, 67 (12), 4751-4768. Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1. 0: A three‐dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117 (B1). Ji, C., Wald, D. J., & Helmberger, D. V. (2002). Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92 (4), 1192-1207. Kanamori, H. (1977). The energy release in great earthquakes. Journal of geophysical research, 82 (20), 2981-2987. Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72 (2), 491-506. Kikuchi, M., Yagi, Y., & Yamanaka, Y. (2000). Source process of the Chi-Chi, Taiwan, earthquake of September 21, 1999 inferred from teleseismic body waves. Bull. Earthquake Res. Inst. Univ. Tokyo, 75 (1), 1-13. King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84 (3), 935-953. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220 (4598), 671-680. Kusky, T. M. (2008). Earthquakes: plate tectonics and earthquake hazards. Infobase Publishing. Langston, C. A., & Helmberger, D. V. (1975). A procedure for modelling shallow dislocation sources. Geophysical Journal International, 42 (1), 117-130. Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems (Vol. 15). Siam. Lay, T., Ammon, C. J., Kanamori, H., Xue, L., & Kim, M. J. (2011). Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake. Earth, planets and space, 63 (7), 32. Lee, S. J., Huang, B. S., Ando, M., Chiu, H. C., & Wang, J. H. (2011). Evidence of large scale repeating slip during the 2011 Tohoku‐Oki earthquake. Geophysical Research Letters, 38 (19). Lee, S. J., Mozziconacci, L., Liang, W. T., Hsu, Y. J., Huang, W. G., & Huang, B. S. (2013). Source complexity of the 4 March 2010 Jiashian, Taiwan, Earthquake determined by joint inversion of teleseismic and near field data. Journal of Asian Earth Sciences, 64, 14-26. Lee, S. J., Yeh, T. Y., Lin, T. C., Lin, Y. Y., Song, T. R. A., & Huang, B. S. (2016). Two‐stage composite megathrust rupture of the 2015 Mw8.4 Illapel, Chile, earthquake identified by spectral‐element inversion of teleseismic waves. Geophysical Research Letters, 43 (10), 4979-4985. Mendoza, C. (1996). Rapid derivation of rupture history for large earthquakes. Seismological Research Letters, 67 (6), 19-26. Mendoza, C., Castro Torres, S., & Gómez González, J. M. (2011). Moment-constrained finite-fault analysis using teleseismic P waves: Mexico subduction zone. Bulletin of the Seismological Society of America, 101 (6), 2675-2684. Olson, A. H., & Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bulletin of the Seismological Society of America, 72 (6A), 1969-2001. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84 (4), 974-1002. Wen, Y. Y., Ma, K. F., & Fry, B. (2018). Multiple‐Fault, Slow Rupture of the 2016 M w 7.8 Kaikōura, New Zealand, Earthquake: Complementary Insights from Teleseismic and Geodetic Data. Bulletin of the Seismological Society of America. Yagi, Y., & Okuwaki, R. (2015). Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake. Geophysical Research Letters, 42 (15), 6229-6235. Yamazaki, Y., Cheung, K. F., & Lay, T. (2013). Modeling of the 2011 Tohoku near‐field tsunami from finite‐fault inversion of seismic waves. Bulletin of the Seismological Society of America, 103 (2B), 1444-1455. Ye, L., Kanamori, H., Avouac, J. P., Li, L., Cheung, K. F., & Lay, T. (2016). The 16 April 2016, M w 7.8 (M s 7.5)Ecuador earthquake: A quasi-repeat of the 1942 M s 7.5 earthquake and partial re-rupture of the 1906 M s 8.6 Colombia–Ecuador earthquake. Earth and Planetary Science Letters, 454, 248-258. Ye, L., Lay, T., Bai, Y., Cheung, K. F., & Kanamori, H. (2017). The 2017 Mw 8.2 Chiapas, Mexico, Earthquake: Energetic Slab Detachment. Geophysical Research Letters, 44 (23). Yue, H., & Lay, T. (2011). Inversion of high‐rate (1 sps)GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophysical Research Letters, 38 (7). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71114 | - |
dc.description.abstract | 全球地震災害頻繁,快速評估中大規模地震 (Mw ≥ 7.0) 之滑移分佈能夠對災害的應變措施作出重要貢獻,因此迫切需要一套即時系統,在地震發生後迅速回報地震的破裂情形。本研究針對全球中大規模地震,發展出一套有限斷層震源快速離線逆推系統。本系統依據全球地震矩張量計畫 (Global Centroid Moment Tensor Project, GCMT project) 所提供之全球地震即時CMT解,反演所需的震源位置則參考美國地質調查局 (United States Geological Survey, USGS) 之結果,並且透過IRIS底下的fdsnws測站服務自動下載遠震波形。根據GCMT和USGS的震源參數報告,包含地震位置、規模、震源機制解,本系統能夠自動地快速判定斷層面之大小、波形時間窗長度與揚起時間。在有限斷層震源逆推時,本研究採用單一斷層面,且允許滑移角度改變,並利用廣義射線理論計算每一個子斷層對地震測站之格林函數。本系統的主要目的是:(1) 提供同震滑移分佈情形之快速解;(2) 找出最大滑移在斷層面上之位置。本研究之系統已經成功地對過去全球十八個中大規模地震進行離線測試,並且將逆推結果跟USGS的結果比較,皆得到一致的特性。本系統的計算時間上,亦比USGS存在優勢,在獲得震源參數和地震波形後,系統僅花40分鐘就能把初步的滑移情形計算出來。 | zh_TW |
dc.description.abstract | Rapid estimation of the spatial slip distribution of moderate-large earthquake (Mw ≥7.0) is essential for emergency response. It is necessary to have a real-time system to provide the report immediately after an earthquake happens. In this study, we develop a finite fault source inversion offline system for the global moderate-large earthquakes. The global earthquakes activities can be monitored by Global Centroid Moment Tensor (GCMT) project which provides the rapid focal mechanism and the source location can be referred to United States Geological Survey (USGS). The teleseismic waveforms were accessed from fdsnws-station service automatically. According to source parameter (location, magnitude, focal mechanism) from USGS and GCMT report, our system automatically determines the fault dimension, record length, and rise time. We adopted one segment fault plane with variable rake angle. The generalized ray theory was applied to calculate the Green’s function for each subfault. The primary objective of the system is to provide the first order image of coseismic slip pattern and identify the centroid location on the fault plane. The performance of this offline system had been demonstrated by several global big earthquakes occurred successfully. The results show excellent data fits and consistent with the solutions from USGS finite fault inversion results. The computing time of our system is less than USGS and preliminary spatial slip distribution will be provided within 40 minutes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:53:42Z (GMT). No. of bitstreams: 1 ntu-107-R05224103-1.pdf: 10913842 bytes, checksum: be9d912c8a629d7a80467a744cb003b0 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 有限斷層之遠震波形逆推 2 1.2.2 目前全球即時有限斷層逆推的進度 3 1.2.3 有限斷層逆推對地震災情的評估 3 1.3 本文範疇與內容 4 第二章 有限斷層逆推理論與方法 5 2.1 逆推參數假設 5 2.2 逆推方法 7 2.2.1 點震源與有限斷層 7 2.2.2 格林函數 (Green’s function) 8 2.2.3 多重時間視窗 (Multiple-time-window) 10 2.2.4 斷層最大破裂速度 (Maximum rupture velocity) 11 2.2.5 震源時間函數之影響 (The effect of source time function) 12 2.2.6 波形延遲時間 (Waveform delay time) 12 2.3 非負最小平方法 (Non-negative least square inversion, NNLS) 16 2.4 子斷層與總震源時間函數之關係 20 2.5 波形擬合程度 (Waveform misfit) 20 2.6 斷層滑移量與規模之關係式 22 2.7 斷層破裂面積之定義 22 2.8 本研究與USGS之有限斷層模型系統比較 23 第三章 系統開發與資料處理 25 3.1 系統開發過程 25 3.1.1 離線有限斷層逆推流程 25 3.1.2 有限斷層參數之判斷依據 28 3.2 資料分析與處理 35 3.2.1 全球地震觀測網 35 3.2.2 波形時間窗長度與濾波範圍 35 3.3 測站包覆性 36 3.4 離線自動化逆推中大規模地震 37 第四章 地震個案討論 38 4.1 2015年5月5日新幾內亞地震 (Mw 7.5) 38 4.1.1 前言 38 4.1.2 分析結果 40 4.1.3 小結 47 4.2 2016年4月16日厄瓜多地震 (Mw 7.8) 48 4.2.1 前言 48 4.2.2 分析結果 49 4.2.3 小結 57 4.3 2012年8月31日菲律賓外海地震 (Mw 7.6) 58 4.3.1 前言 58 4.3.2 分析結果 59 4.3.3 小結 66 4.4 目前已測試個案 67 第五章 結論與未來展望 69 5.1 結論 69 5.2 未來研究內容 69 附錄 75 | |
dc.language.iso | zh-TW | |
dc.title | 全球中大規模地震有限斷層逆推之系統開發 | zh_TW |
dc.title | Development of automatic finite-fault source inversion for global moderate-large earthquakes | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李憲忠(Shiann-Jong Lee) | |
dc.contributor.oralexamcommittee | 梁文宗(Wen-Tzong Liang),曾泰琳(Tai-Lin Tseng),陳伯飛(Po-Fei Chen) | |
dc.subject.keyword | 有限斷層逆推,遠震體波,自動離線測試,全球中大規模地震, | zh_TW |
dc.subject.keyword | finite-fault inversion,teleseismic body wave,automatic offline test,global moderate-large earthquakes, | en |
dc.relation.page | 123 | |
dc.identifier.doi | 10.6342/NTU201801885 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 10.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。