請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71111完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hang-chun Chang) | |
| dc.contributor.author | Shang-ding Shyu | en |
| dc.contributor.author | 徐尚鼎 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:53:33Z | - |
| dc.date.available | 2028-07-23 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-30 | |
| dc.identifier.citation | Bibliography
Byun, K. M., and S. J. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express, vol. 13, pp. 3737–3742, 2005. Chiou, S. M., and H. C. Chang, “A modified contour bowtie nano-antenna and its near-field enhancement,”in Proc. OPTIC 2013, paper, 2013-THU-P0101-P011,2013. Chong, T., 3-D FDTD Studies of Several Nano Metal Structures. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, August 2017. Courant, R., K. Friedrichs, and H. Lewy,“Uber die partiellen differenzengleihhungen der mathematischen physik,” Math. Ann., vol. 100, pp. 32–74, 1928. Drude, P., “Zur elektronentheorie der metalle,” Ann. Phys., vol. 1, pp. 566–613,1900. Fischer, H., and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantenna,” Opt. Express, vol. 16, pp. 9144–9154, 2008. Farahani, J. N., H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnol., vol. 18, no. 12, 2007, Art ID. 125506. Harrington, R. F., “The method of moments in electromagnetics,” J. Electromagn. Waves Appl., vol. 1, pp. 181–200, 1987. Hsiao, H. H., S. M. Chiou, Y. P. Chang, and H. C. Chang, “Broadly tunning resonant wavelengths of contour bowtie nano-antennas operating in the near- and mid- infrared,” IEEE Photon. J., vol. 7, 2015, Art ID. 4501108. Nahla A. Hatab, Chun-Hway Hsueh, Abigail L. Gaddis, Scott T. Retterer, Jia- Han Li, Gyula Eres, Zhenyu Zhang, and Baohua Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett., vol. 10, pp. 4952–4955, 2010. Karumuri, S., and A. K. Kalkan, “Hybird plasmon damping chemical sensor,” IEEE Trans. Nanotechno., 2011. Kernighan, B. W., D. M. Ritchie, and P. Ejeklint, The C programming Language vol. 2, Prentice-Hall Englewood Cliffs, 1988. Liu, Y. -C., Study of multi-bent-section nano-antenna structures using the parallelized finite-difference time-domain method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, August 2016. Lorentz, H. A., The Theory of Electrons. Teubner, 1906. vol. 1, pp. 122–125, 1997. Maier, S. A., Plasmonics: Fundamentals and Applications. New York, NY: Springer, 2007. Mie, G., “Beitrge zur optik trber medien, speziell kolloidaler metallsungen,” Annalen der Physik, vol. 330, pp. 377–445, 1908. Novotny, L., and N. Y. Hulst, “Antennas for light,” Nat. Photon., vol. 5, pp. 83–90, 2011. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 121–123, 1997. Palik, E. D., Handbook of Optical Constants of Solids. London, U.K.: Academic, 1985. Roden, J. A., and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave Opt. Technol. Lett., vol. 27, pp. 334–339, 2000. Schuller, J. A., E. S. Barnard W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma “Plasmonics for extreme light concentration and manipulation,” Nat. Mater., vol. 9, no. 3, pp. 193–204, 2010. Seok, T. J., A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovich, and M. C. Wu, “Radiation engineering of optical antennas for maximum fi enhancement,” Nano Lett., vol. 11, pp. 2606–2610, 2011. Taflove, A., and M. Brodwin, Computation Electromagnetics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House, 2005. Umashankar, K., and A. Taflove, “A novel method to analyze electromagnetic scat- tering of complex objects,” IEEE Trans. Electromagnetic Compat., vol. 24, pp.397–405, 1982. Wang, L., S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett., vol. 6, pp. 361–364, 2006. Weiland, T., “A discretization model for the solution of Maxwell’s equation for six-component field Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116–120, 1977. Xu, H., E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett., vol. 83, 4357–4360, 1999. Yee, K., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propaga., vol. 14, pp. 302–307, 1966. Zhang, W., L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett., vol. 10, pp. 1006–1011, 2010. Zienkiewicz, M., and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507-510, 1965 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71111 | - |
| dc.description.abstract | 三維時域有限差分法已成為廣泛使用的電磁模擬方法,我們利用C++程式語言建構一個具平行運算能力之三維時域有限差分法模擬器, 利用訊息傳遞介面協定進行多工處理下,處理器互相傳遞訊息之方法,進而達到加速模擬之效果。本篇論文主要分析線性奈米偶極天線結構之間隙電場增強效應。 首先,討論單一線性奈米偶極天線,以一正向入射平面電磁波作為波 源,得到波長區間為 0.3 微米到 4.0 微米的響應,計算線性奈米偶極天線間隙之局部電場增強效應及其共振波長,並且調整偶極天線之長度,以觀察天線長度變化對於增強效應之影響和兩者之間的關係。當 極化方向之天線長度越長,其共振波長越長,其增強效應越強。其後研究線性奈米偶極天線陣列,比較不同之天線陣列結構,發現陣列中 單元天線之極化方向長度互相交疊越多,間隙電場增強效應越強,最後以二維線性奈米偶極天線陣列之間隙電場增強效應最強。 | zh_TW |
| dc.description.abstract | The finite-difference time-domain (FDTD) method has been an popular electromagnetics simulation technique. We construct a parallelized three-dimensional (3-D) electromagnetics simulator using the FDTD method in C++ language. We use the message pass interface (MPI) protocol and multiprocessing so that the simulation time can be shortened. The main topic of this thesis research is to analyze the gap-field enhancement of nano dipole antennas under normally incident light. Firstly, single nano-dipoles are simulated by applying a broadband normally incident plane wave to get their responses for the electric-field enhancements in the dipole gap and resonant wavelengths in the wavelength range of 0.3 m to 4.0 m. Then the length of linear dipole nano-antenna is changed in order to observe the influence of dipole length. It is found that the longer that portion in the x-direction of the dipole, the higher the gap-field enhancement. Then linear dipole nano-antennas arrays are studied. Different kinds of nano-antennas arrays are compared. It is found that the more portion in the x-direction of the dipole overlaps with the adjacent dipole in the array, the electric field enhancement would be larger. These results reveal that the 2-D linear dipole nano-antenna arrays have the maximum enhancement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:53:33Z (GMT). No. of bitstreams: 1 ntu-107-R05942028-1.pdf: 1993290 bytes, checksum: 15cdb2f3512f6a63b1f9a2bc1d129219 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Introduction to Computational Electromagnetic . . . . ....... . . . . . . . 2 1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 3 2 The Finite-Difference Time-Domain (FDTD) Method 6 2.1 Yee Algorithm for Maxwell’s Equations . . . . . . . . . . . . . . . . . . . 6 2.2 The Courant Stability Limit . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 The Total-field/Scatter-field Technique . . . . . . . . . . . . . . . . . 9 2.4 Convolutional Perfectly Matched Layer (CPML) . . . . . . . . . . . . 10 2.5 Modeling of Dispersive Materials . . . . . . . . . . . . . . . . . . . . 12 2.5.1 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.2 The Drude-Lorentz Model . . . . . . . . . . . . . . . . . . . . 13 2.5.3 The Auxiliary Differential Equation (ADE) Method . . . . . . 14 2.6 Periodic Boundary Conditions (PBC) . . . . . . . . . . . . . . . . . . 16 2.7 Parallelized FDTD Method . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 Verification of FDTD Simulated Results with Some Analytical Solutions 17 2.8.1 Numerical Accuracy Verification for 2-D Circular Cylinders . . . 17 2.8.2 Numerical Accuracy Verification for the 3-D Silver Sphere . . 18 3 Gap-Field Enhancement in Linear Dipole Nano-Antennas 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Simulations of Single Linear Dipole Nano-Antennas . . . . . . . . . . 24 3.3 Comparisons of Single Linear Dipole Nano-Antennas with Different Dipole Length . . 27 4 Gap-Field Enhancement in Linear Dipole Nano-Antenna Arrays 40 4.1 Simulations of Interaction of Two Linear Dipole Nano-Antennas . . . . . . . 41 4.2 Simulations of Four Element Linear Dipole Nano-Antenna Arrays . . 43 4.3 Simulations of 1-D Linear Dipole Nano-Antenna Arrays . . . . . . . . 44 4.4 Simulations of 2-D Linear Dipole Nano-Antenna Arrays . . . . . . . . 46 5 Conclusion 60 Bibliography 62 | |
| dc.language.iso | en | |
| dc.subject | 有限時域差分法 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 奈米天線 | zh_TW |
| dc.subject | 天線陣列 | zh_TW |
| dc.subject | Finite-difference time-domain (FDTD) method | en |
| dc.subject | surface plasmons | en |
| dc.subject | linear dipole nano-antennas | en |
| dc.subject | gap-field enhancement | en |
| dc.title | 以三維時域有限差分法研究線性偶極奈米天線結構之間隙電場增強效應 | zh_TW |
| dc.title | 3-D FDTD Studies of Gap-Electric-Field Enhancement in Linear Dipole Nano-Antenna Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張世慧,楊宗哲 | |
| dc.subject.keyword | 有限時域差分法,表面電漿子,奈米天線,天線陣列, | zh_TW |
| dc.subject.keyword | Finite-difference time-domain (FDTD) method,surface plasmons,linear dipole nano-antennas,gap-field enhancement, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201801952 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
