請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71104完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈偉強(Wei-Chiang Shen) | |
| dc.contributor.author | Jauhar Syauqi | en |
| dc.contributor.author | 施喬和 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:53:11Z | - |
| dc.date.available | 2026-01-31 | |
| dc.date.copyright | 2021-03-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-18 | |
| dc.identifier.citation | Agrios, G. 2005. Plant Pathology, 5th ed. Elsevier, Amsterdam, The Netherlands. Anderson, J. P., Gleason, C. A., Foley, R. C., Thrall, P. H., Burdon, J. B., and Singh, K. B. 2010. Plants versus pathogens: an evolutionary arms race. Funct. Plant Biol. 37:499-512. Bai, P., Park, C. H., Shirsekar, G., Songkumarn, P., Bellizzi, M., and Wang, G. L. 2019. Role of lysine residues of the Magnaporthe oryzae effector AvrPiz-t in effector- and PAMP-triggered immunity. Mol. Plant Pathol. 20:599-608. Bryan, G. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H. P., McAdams, S. A., Faulk, K. N., Donaldson, G. K., Tarchini, R., and Valent, B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033-2046. Chada, S., and Sharma, M. 2014. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae. PLoS ONE 9: e94415 Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M., Yoshida, K., Terauchi, R., Fujita, Y., Nakayashiki, H., Valent, B., and Tosa, Y. 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 7:e1002147. Chuma, I., Tosa, Y., Taga, M., Nakayashiki, H., and Mayama, S. 2003. Meiotic behavior of a supernumerary chromosome in Magnaporthe oryzae. Curr. Genet. 43:191-198. Couch, B. C., and Kohn, L. M. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683-693. Dai, Y., Jia, Y., Correll, J., Wang, X., and Wang, Y. 2010. Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet. Biol. 47:973-980. Damchuay, K., Longya, A., Sriwongchai, T., Songkumarn, P., Parinthawong, N., Darwell, K., Talumphai, S., Tasanasuwan, P., and Jantasuriyarat, C. 2020. High nucleotide sequence variation of avirulent gene, AVR-Pita1, in Thai rice blast fungus population. J. Genet. 99:45. de Guillen, K., Ortiz-Vallejo, D., Gracy, J., Fournier, E., Kroj, T., and Padilla, A. 2015. Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLoS Pathog. 11:e1005228. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H., Read, N. D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E., and Birren, B. W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986. Fang, X. L., Snell, P., Barbetti, M. J., and Lanoiselet, V. 2017. Races of Magnaporthe oryzae in Australia and genes with resistance to these races revealed through host resistance screening in monogenic lines of Oryza sativa. Eur. J. Plant Pathol. 148:647-656. FAO. 2020a. Production of rice, paddy: top 10 producers. FAOSTAT. Available at: http://www.fao.org/faostat/en/#data/QC/visualize [Accessed October 29, 2020]. FAO. 2020b. Production/yield quantities of rice, paddy in Taiwan. FAOSTAT. Available at: http://www.fao.org/faostat/en/#data/QC/visualize [Accessed October 28, 2020]. Fernandez, J., and Orth, K. 2018. Rise of a cereal killer: The biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol. 26:582-597. George, M. L., Nelson, R. J., Zeigler, R. S., and Leung, H. 1998. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology 88:223-229. Greer, C. A., Scardaci, S. C., and Webster, R. K. 1997. First report of rice blast caused by Pyricularia grisea in California. Plant Dis. 81:1094. Hamer, J. E., Howard, R. J., Chumley, F. G., and Valent, B. 1988. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288-290. He, C., Rusu, A. G., Poplawski, A. M., Irwin, J. A., and Manners, J. M. 1998. Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics 150:1459-1466. Hsing Y.I.C., 2014. Rice in Taiwan. Pages 1-3 in: Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer, The Netherlands. Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P., and Valent, B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:4004-4014. Jia, Y., Wang, Z., Fjellstrom, R. G., Moldenhauer, K. A., Azam, M. A., Correll, J., Lee, F. N., Xia, Y., and Rutger, J. N. 2004. Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the United States. Phytopathology 94:296-301. Jia, Y., Zhou, E., Lee, S., and Bianco, T. 2016. Coevolutionary dynamics of rice blast resistance gene Pi-ta and Magnaporthe oryzae avirulence gene AVR-Pita1. Phytopathology 106:676-683. Kachroo, P., Leong, S. A., and Chattoo, B. B. 1994. Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 245:339-348. Kachroo, P., Leong, S. A., and Chattoo, B. B. 1995. Mg-SINE: a short interspersed nuclear element from the rice blast fungus, Magnaporthe grisea. Proc. Natl. Acad. Sci. USA 92:11125-11129. Kang, S., Lebrun, M. H., Farrall, L., and Valent, B. 2001. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol. Plant Microbe Interact. 14:671-674. Kang, S., Chumley, F. G., and Valent, B. 1994. Isolation of the mating-type genes of the phytopathogenic fungus Magnaporthe grisea using genomic subtraction. Genetics 138:289-296. Kankanala, P., Czymmek, K., and Valent, B. 2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706-724. Kanzaki, H., Yoshida, K., Saitoh, H., Fujisaki, K., Hirabuchi, A., Alaux, L., Fournier, E., Tharreau, D., and Terauchi, R. 2012. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 72:894-907. Kasetsomboon, T., Kate-Ngam, S., Sriwongchai, T., Zhou, B., and Jantasuriyarat, C. 2013. Sequence variation of avirulence gene AVR-Pita1 in rice blast fungus, Magnaporthe oryzae. Mycol. Prog. 12:617-628. Khang, C. H., Berruyer, R., Giraldo, M. C., Kankanala, P., Park, S. Y., Czymmek, K., Kang, S., and Valent, B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388-1403. Khang, C. H., Park, S. Y., Lee, Y. H., Valent, B., and Kang, S. 2008. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol. Plant Microbe Interact. 21:658-670. Kusaba, M., Mochida, T., Naridomi, T., Fujita, Y., Chuma, I., and Tosa, Y. 2014. Loss of a 1.6 Mb chromosome in Pyricularia oryzae harboring two alleles of AvrPik leads to acquisition of virulence to rice cultivars containing resistance alleles at the Pik locus. Curr. Genet. 60:315-325. Lai T., and Sprecher A. A. 2019. Taiwan grain and feed annual. USDA GAIN Report. Available at: https://www.fas.usda.gov/data/taiwan-grain-and-feed-annual-4 [Accessed October 29, 2020]. Lee, S., Costanzo, S., Jia, Y., Olsen, K. M., and Caicedo, A. L. 2009. Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza species. Genetics 183:1315-1325. Li, J., Wang, Q., Li, C., Bi, Y., Fu, X., and Wang, R. 2019. Novel haplotypes and networks of AVR-Pik alleles in Magnaporthe oryzae. BMC Plant Biol. 19:204. Li, P., Bai, B., Zhang, H. Y., Zhou, H., and Zhou, B. 2012. Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae. J. Zhejiang Univ. Sci. B 13:452-464. Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X., Zhang, Z., Zhao, Q., Feng, Q., Zhang, H., Wang, Z., Wang, G., Han, B., Wang, Z., and Zhou, B. 2009. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol. Plant Microbe Interact. 22:411-420. Liu, G., Lu, G., Zeng, L., and Wang, G. L. 2002. Two broad-spectrum blast resistance genes, Pi9( t) and Pi2( t), are physically linked on rice chromosome 6. Mol. Genet. Genomics 267:472-480. Longya, A., Chaipanya, C., Franceschetti, M., Maidment, J. H. R., Banfield, M. J., and Jantasuriyarat, C. 2019. Gene duplication and mutation in the emergence of a novel aggressive allele of the AVR-Pik effector in the rice blast fungus. Mol. Plant Microbe Interact. 32:740-749. Luo, C. X., Yin, L. F., Koyanagi, S., Farman, M. L., Kusaba, M., and Yaegashi, H. 2005. Genetic mapping and chromosomal assignment of Magnaporthe oryzae avirulence genes AvrPik, AvrPiz, and AvrPiz-t controlling cultivar specificity on rice. Phytopathology 95:640-647. Luo, C. X., Yin, L. F., Ohtaka, K., and Kusaba, M. 2007. The 1.6 Mb chromosome carrying the avirulence gene AvrPik in Magnaporthe oryzae isolate 84R-62B is a chimera containing chromosome 1 sequences. Mycol. Res. 111:232-239. Ma, B. T., Qu, G. L., Shi, J., Chen, D. X., Lin, Y. F., Huang, W. J., and Li, S. G. 2008. Genetic diversity of AVR-pita alleles of rice blast fungus Magnaporthe grisea. Fen Zi Xi Bao Sheng Wu Xue Bao 41:495-499. Ma, L. J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang, S., Shim, W. B., Woloshuk, C., Xie, X., Xu, J. R., Antoniw, J., Baker, S. E., Bluhm, B. H., Breakspear, A., Brown, D. W., Butchko, R. A., Chapman, S., Coulson, R., Coutinho, P. M., Danchin, E. G., Diener, A., Gale, L. R., Gardiner, D. M., Goff, S., Hammond-Kosack, K. E., Hilburn, K., Hua-Van, A., Jonkers, W., Kazan, K., Kodira, C. D., Koehrsen, M., Kumar, L., Lee, Y. H., Li, L., Manners, J. M., Miranda-Saavedra, D., Mukherjee, M., Park, G., Park, J., Park, S. Y., Proctor, R. H., Regev, A., Ruiz-Roldan, M. C., Sain, D., Sakthikumar, S., Sykes, S., Schwartz, D. C., Turgeon, B. G., Wapinski, I., Yoder, O., Young, S., Zeng, Q., Zhou, S., Galagan, J., Cuomo, C. A., Kistler, H. C., and Rep, M. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367-373. Maqbool, A., Saitoh, H., Franceschetti, M., Stevenson, C. E., Uemura, A., Kanzaki, H., Kamoun, S., Terauchi, R., and Banfield, M. J. 2015. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4:e08709. Meng, X., Xiao, G., Telebanco-Yanoria, M. J., Siazon, P. M., Padilla, J., Opulencia, R., Bigirimana, J., Habarugira, G., Wu, J., Li, M., Wang, B., Lu, G. D., and Zhou, B. 2020. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. Rice 13:19. Mentlak, T. A., Kombrink, A., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., Terauchi, R., Nishizawa, Y., Shibuya, N., Thomma, B. P., and Talbot, N. J. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322-335. Muthayya, S., Sugimoto, J. D., Montgomery, S., and Maberly, G. F. 2014. An overview of global rice production, supply, trade, and consumption. Ann. NY Acad. Sci. 1324:7-14. Niu, N. S., Ruan, H. C., Liu, X. Z., Yang, X. J., Dai, Y. L., Gan, L., Chen, F. R., and Du, Y. X. 2018. Virulence structure of Magnaporthe oryzae populations from Fujian Province, China. Can. J. Plant Pathol. 40:542-550. Noguchi, M. T., Yasuda, N., and Fujita, Y. 2006. Evidence of genetic exchange by parasexual recombination and genetic analysis of pathogenicity and mating type of parasexual recombinants in rice blast fungus, Magnaporthe oryzae. Phytopathology 96:746-750. Olukayode, T., Quime, B., Shen, Y. C., Yanoria, M. J., Zhang, S., Yang, J., Zhu, X., Shen, W. C., von Tiedemann, A., and Zhou, B. 2019. Dynamic insertion of Pot3 in AvrPib prevailing in a field rice blast population in the Philippines led to the high virulence frequency against the resistance gene Pib in rice. Phytopathology 109:870-877. Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G., and Valent, B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019-2032. Ou, S. H., and Commonwealth Mycological Institute (Great Britain). 1985. Rice diseases. 2nd ed. Commonwealth Mycological Institute. Kew: UK. Park, C. H., Chen, S., Shirsekar, G., Zhou, B., Khang, C. H., Songkumarn, P., Afzal, A. J., Ning, Y., Wang, R., Bellizzi, M., Valent, B., and Wang, G. L. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748-4762. Park, C. H., Shirsekar, G., Bellizzi, M., Chen, S., Songkumarn, P., Xie, X., Shi, X., Ning, Y., Zhou, B., Suttiviriya, P., Wang, M., Umemura, K., and Wang, G. L. 2016. The E3 Ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathog. 12:e1005529. Peng, Z., Oliveira-Garcia, E., Lin, G., Hu, Y., Dalby, M., Migeon, P., Tang, H., Farman, M., Cook, D., White, F. F., Valent, B., and Liu, S. 2019. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet. 15:e1008272. Petit-Houdenot, Y., and Fudal, I. 2017. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Front. Plant Sci. 8:1072 Porebski, S., Bailey, L. G., and Baum, B. R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15:8-15. Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B., and Wang, G. L. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901-1914. Ray, S., Singh, P. K., Gupta, D. K., Mahato, A. K., Sarkar, C., Rathour, R., Singh, N. K., and Sharma, T. R. 2016. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Front. Plant Sci. 7:1140. Ricestat IRRI. 2020. Harvested area and yield of paddy. World rice statistics online query facility. Available at: http://ricestat.irri.org:8080/wrsv3/entrypoint.htm [Accessed October 29, 2020]. Roh, J.H., Kim, B.R., Lee, S.W., Cho, Y.C., Ra, D.S., Oh, I.S., and Han, S.S. 2009 Sequential Planting as a Method of Screening of Durable Resistance to Rice Blast in Korea. Pages 337-346 in: Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer: Netherlands Ryder, L. S., and Talbot, N. J. 2015. Regulation of appressorium development in pathogenic fungi. Curr. Opin. Plant Biol. 26:8-13. Saccardo, P. A. 1880. Conspectus generum fungorum italiae inferiorum. Michelia 2:1-135. Sakulkoo, W., Oses-Ruiz, M., Oliveira Garcia, E., Soanes, D. M., Littlejohn, G. R., Hacker, C., Correia, A., Valent, B., and Talbot, N. J. 2018. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 359:1399-1403. Schoustra, S. E., Debets, A. J., Slakhorst, M., and Hoekstra, R. F. 2007. Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genet. 3:e68. Seo, J., Lee, S. M., Han, J. H., Shin, N. H., Lee, Y. K., Kim, B., Chin, J. H., and Koh, H. J. 2020. Characterization of the common japonica-originated genomic regions in the high-yielding varieties developed from inter-subspecific crosses in temperate rice (Oryza sativa L.). Genes (Basel) 11:562 Shahriar, S. A., Imtiaz, A. A., Hossain, M. B., Husna, A., and Eaty, M. J. K. 2020. Review: rice blast disease. Annu. Res. Rev. Biol. 35: 50-64 Sharpee, W., Oh, Y., Yi, M., Franck, W., Eyre, A., Okagaki, L. H., Valent, B., and Dean, R. A. 2017. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae. Mol. Plant Pathol. 18:850-863. Singh, P. K., Thakur, S., Rathour, R., Variar, M., Prashanthi, S. K., Singh, A. K., Singh, U. D., Sharma, V., Singh, N. K., and Sharma, T. R. 2014. Transposon-based high sequence diversity in Avr-Pita alleles increases the potential for pathogenicity of Magnaporthe oryzae populations. Funct. Integr. Genomics 14:419-429. Talbot, N. J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202. Tang, M., Ning, Y., Shu, X., Dong, B., Zhang, H., Wu, D., Wang, H., Wang, G. L., and Zhou, B. 2017. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae. Rice 10:5. Thakur, S., Gupta, Y. K., Singh, P. K., Rathour, R., Variar, M., Prashanthi, S. K., Singh, A. K., Singh, U. D., Chand, D., Rana, J. C., Singh, N. K., and Sharma, T. R. 2013. Molecular diversity in rice blast resistance gene Pi-ta makes it highly effective against dynamic population of Magnaporthe oryzae. Funct. Integr. Genomics 13:309-322. Trang, H. T. T., Chau, N. N. B., Thao, N. P., Jantasuriyarat, C., and Quoc, N. B. 2019. Analyzing sequence variation of the avirulence Avr-Pita1 gene of rice blast isolates, Magnaporthe oryzae in Vietnam. Agric. Nat. Resour. 53:20-25. Wang, B. H., Ebbole, D. J., and Wang, Z. H. 2017a. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. J. Integr. Agric. 16: 2746-2760. Wang, J. C., Correll, J. C., and Jia, Y. 2015. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays. Crop Prot. 72:132-138. Wang, R., Ning, Y., Shi, X., He, F., Zhang, C., Fan, J., Jiang, N., Zhang, Y., Zhang, T., Hu, Y., Bellizzi, M., and Wang, G. L. 2016. Immunity to rice blast disease by suppression of effector-triggered necrosis. Curr. Biol. 26:2399-2411. Wang, W., Su, J., Chen, K., Yang, J., Chen, S., Wang, C., Feng, A., Wang, Z., Wei, X., Zhu, X., Lu, G. D., and Zhou, B. 2020. Dynamics of the rice blast fungal population in the field after deployment of an improved rice variety containing known resistance genes. Plant Dis. DOI: 10.1094/PDIS-06-20-1348-RE Wang, X., Jia, Y., Wamishe, Y., Jia, M. H., and Valent, B. 2017b. Dynamic changes in the rice blast population in the United States over six decades. Mol. Plant Microbe Interact. 30:803-812. Wang, Z. X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y., and Sasaki, T. 1999. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19:55-64. Wicker, T., Yu, Y., Haberer, G., Mayer, K. F., Marri, P. R., Rounsley, S., Chen, M., Zuccolo, A., Panaud, O., Wing, R. A., and Roffler, S. 2016. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat. Commun. 7:12790. Wicker, T., Yu, Y., Haberer, G., Mayer, K. F., Marri, P. R., Rounsley, S., Chen, M., Zuccolo, A., Panaud, O., Wing, R. A., and Roffler, S. 2016. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat. Commun. 7:12790. Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., Song, M. Y., Cumagun, C. J., Deng, Q., Lu, G., Jeon, J. S., Naqvi, N. I., and Zhou, B. 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 206:1463-1475. Wu, W., Wang, L., Zhang, S., Li, Z., Zhang, Y., Lin, F., and Pan, Q. 2014. Stepwise arms race between AvrPik and Pik alleles in the rice blast pathosystem. Mol. Plant Microbe Interact. 27:759-769. Yang, Y., Zhu, K., Xia, H., Chen, L., and Chen, K. 2014. Comparative proteomic analysis of indica and japonica rice varieties. Genet. Mol. Biol. 37:652-661. Yoshida, K., Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, K., Tosa, Y., Chuma, I., Takano, Y., Win, J., Kamoun, S., and Terauchi, R. 2009. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573-1591. Zambryski, P. 2004. Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. J. Cell Biol. 164: 165–168. Zeigler, R. S., Scott, R. P., Leung, H., Bordeos, A. A., Kumar, J., and Nelson, R. J. 1997. Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. Phytopathology 87:284-294. Zhai, C., Lin, F., Dong, Z., He, X., Yuan, B., Zeng, X., Wang, L., and Pan, Q. 2011. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 189:321-334. Zhai, C., Zhang, Y., Yao, N., Lin, F., Liu, Z., Dong, Z., Wang, L., and Pan, Q. 2014. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One 9:e98067. Zhang, H., Zheng, X., and Zhang, Z. 2016. The Magnaporthe grisea species complex and plant pathogenesis. Mol. Plant. Pathol. 17:796-804. Zhang, S., Wang, L., Wu, W., He, L., Yang, X., and Pan, Q. 2015. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci. Rep. 5:11642. Zhang, X., He, D., Zhao, Y., Cheng, X., Zhao, W., Taylor, I. A., Yang, J., Liu, J., and Peng, Y. L. 2018. A positive-charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus. Plant J. 96:133-146. Zhang, Y., Wang, J., Yao, Y., Jin, X., Correll, J., Wang, L., and Pan, Q. 2019. Dynamics of race structures of the rice blast pathogen population in Heilongjiang Province, China from 2006 through 2015. Plant Dis. 103:2759-2763. Zhang, Z. M., Zhang, X., Zhou, Z. R., Hu, H. Y., Liu, M., Zhou, B., and Zhou, J. 2013. Solution structure of the Magnaporthe oryzae avirulence protein AvrPiz-t. J. Biomol. NMR 55:219-223. Zhao, X., Kim, Y., Park, G., and Xu, J. R. 2005. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317-1329. Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu, G., Bellizzi, M., and Wang, G. L. 2006. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant Microbe Interact. 19:1216-1228. Zhou, E., Jia, Y., Singh, P., Correll, J. C., and Lee, F. N. 2007. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet. Biol. 44:1024-1034. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71104 | - |
| dc.description.abstract | 水稻,為世界重要糧食作物,全世界約有35億人以稻米為主食。水稻稻熱病,由病原真菌Magnaporthe oryzae所引起,該病害的發生對稻米的生產深具威脅,影響產量甚鉅。在稻熱病的防治上,抗性品種的培育和推廣種植,為有效的措施之一。然而,由於田間稻熱病菌族群的動態消長和快速演替,抗病品種的田間抗性常快速崩解,不易維持。稻熱病的垂直抗性通常遵循「基因對基因」的關係,其中水稻帶有的抗病(R)基因,因對於稻熱病菌所帶有相對應無毒(AVR)基因的辨識,可誘發寄主抗性的產生。因此,分析和監測田間稻熱病菌AVR基因的基因型和演化,為有效維持抗病品種田間抗性的重要工作。本研究利用國際水稻研究所開發的31個LTH IRBL單基因抗病品系進行田間病原族群監測,結果顯示臺灣田間稻熱病菌族群至少具有9個AVR-Pib基因型及12個AVR-Pita1基因型,而目前尚未發現AVR-Pi9基因突變的存在。此外,根據AVR-Pizt、AVR-Pik及AVR-Pib基因的篩選,目前臺灣田間稻熱病菌可分為21群,而針對能否感染帶有Pizt、Pik及Pib基因的水稻品種,可區分為8個不同生理小種。根據族群結構分析,臺東地區稻熱病菌族群最為複雜,存在有10個譜系,而桃園地區的族群最為單純,僅有3個譜系。此外,針對2020年在嘉義鹿草和臺南善化地區發生的穗稻熱病疫情樣品分析,結果顯示可能是由新的獨特稻熱病菌生理小種所引起,明顯有別於已知存在於田間的族群。綜合上述,希望本研究稻熱病菌族群的分析及調查,能夠有效預防稻熱病疫情的發生,並作為水稻永續生產的重要參考資訊。 | zh_TW |
| dc.description.abstract | Rice is an important staple food consumed by an estimated 3.5 billion people worldwide. Rice blast caused by Magnaporthe oryzae is a dangerous threat to rice production and can reduce rice productivity significantly. Breeding and deployment of resistant variety is one of the effective measures to manage blast disease. However, breakdown of field resistance has been occurred frequently due to highly dynamic and quickly evolved pathogen population in the fields. Blast vertical resistance in rice generally follows a gene-for-gene relationship in which the host plant carrying a specific resistance (R) gene shows resistance against the pathogen with the corresponding avirulence (AVR) gene. Therefore, characterizing and monitoring the genotypes and evolution of AVR genes among field isolates are important tasks to sustain field resistance. Utilizing 31 IRRI LTH IRBL monogenic lines that carry single R genes, 9 genotypes of AVR-Pib gene and 12 genotypes of AVR-Pita1 gene among Taiwan rice blast fungus population were revealed. Furthermore, none of mutation can be identified in the open reading frame of AVR-Pi9 gene. Screening of three important AVR genes, AVR-Pizt, AVR-Pik and AVR-Pib, can differentiate current Taiwan rice blast fungus population into 21 groups, which stand for 8 physiological races based on their abilities to infect the rice lines or varieties containing Pizt, Pik and Pib genes. Based on the population analyses, Taitung contained the most diverse pathogen population with 10 different lineages and Taoyuan had the simplest population with only 3 lineages. Moreover, panicle blast outbreak which occurred in Lucao, Chiayi and Shanhua, Tainan in 2020 was likely caused by new and unique lineages distinct from the common pre-existing population. Taken together, we hope our pathogen surveillance studies will provide the information to prevent blast epidemics and also the foundation for sustainable rice production. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:53:11Z (GMT). No. of bitstreams: 1 U0001-1702202110273300.pdf: 26795121 bytes, checksum: 9de85cf174bba715f43aac006e9e720b (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Acknowledgment i Abstract ii Chinese Abstract iv Table of Contents vi List of Tables x List of Figures xii Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Rice and its importance 3 2.2 Rice blast disease 4 2.3 M. oryzae taxonomy, nomenclature and classification 5 2.4 M. oryzae biology and ecology 5 2.5 Rice/M. oryzae gene for gene concept 7 2.6 Pi-ta/AVR-Pita interaction 9 2.7 Pi-k/AVR-Pik interaction 11 2.8 Piz-t/AVR-Pizt interaction 12 2.9 Pib and AVR-Pib 13 2.10 Pi9 and AVR-Pi9 14 Chapter 3 Materials and methods 16 vii 3.1 Samples collection 16 3.3 DNA extraction 16 3.3.1 Fungal DNA extraction 16 3.3.2 Single lesion DNA extraction 17 3.4 Pot2-rep PCR DNA fingerprinting 18 3.5 Polymerase chain reaction (PCR) 19 3.5.1 AVR-Pib gene PCR amplification and screening 19 3.5.2 AVR-Pita1 gene PCR amplification 20 3.5.3 AVR-Pi9 gene PCR amplification 20 3.5.4 AVR-Pizt gene PCR screening 21 3.5.5 AVR-Pik gene PCR screening and differentiation 21 3.5.6 M. oryzae mating type screening 22 3.6 PCR product purification, gel extraction, and sequencing 22 3.7 TOPO cloning 24 3.8 Pathogenicity assay 25 3.8.1 Rice plant preparation 25 3.8.2 Rice blast fungus spray inoculation 26 3.8.3 Rice blast fungus spot inoculation 26 3.9 M. oryzae genome references and analysis 27 Chapter 4 Results 28 4.1 Effectiveness of blast resistance genes in Taiwan 28 4.2 Field sample collection and isolation of rice blast isolates 30 4.3 AVR-Pib genotypic polymorphism 32 4.3.1 AVR-Pib gene identification 32 4.3.2 Functional analysis of AVR-Pib genotypes 35 4.3.3 Distribution and frequency of AVR-Pib genotypes 36 4.3.4 Pot2 phylogenetic tree of AVR-Pib virulent isolates with representative 2020 collected isolates 37 4.4 AVR-Pita1 genotypic polymorphism 37 4.4.1 AVR-Pita1 PCR amplification 37 4.4.2 Different number of AVR-Pita1 alleles were present in the genome of Taiwan rice blast fungi 38 4.4.3 AVR-Pita1 allele identification 39 4.5 AVR-Pi9 amplification and open reading frame sequencing 40 4.6 Population analysis of rice blast fungus isolates collected from 2019 and 2020 41 4.6.1 AVR-Pizt and AVR-Pik gene screening of 2019 and 2020 isolates 41 4.6.2 Twenty-one rice blast fungus groups of 2019 and 2020 isolates and their distribution in Taiwan 43 4.6.3 Eight rice blast fungus physiological races of 2019 and 2020 isolates and their distribution in Taiwan 45 4.6.4 Pot2 fingerprinting analysis of 2019 isolates 46 4.6.5 Pot2 fingerprinting analysis of 2020 isolates 47 4.6.6 Dynamic change of rice blast fungus population in Pingtung disease monitoring plot in 2020 50 4.6.7 Panicle blast outbreak in Chiayi and Tainan in 2020 51 Chapter 5 Discussion 53 References 59 Tables 73 Figures 91 Appendix 181 | |
| dc.language.iso | en | |
| dc.subject | 稻熱病菌 | zh_TW |
| dc.subject | 稻熱病 | zh_TW |
| dc.subject | 軍備競賽 | zh_TW |
| dc.subject | 無毒基因 | zh_TW |
| dc.subject | 基因對基因關係 | zh_TW |
| dc.subject | Magnaporthe oryzae | en |
| dc.subject | Rice blast disease | en |
| dc.subject | AVR gene | en |
| dc.subject | Gene-for-gene | en |
| dc.subject | Arms and race | en |
| dc.title | 臺灣稻熱病菌AVR-Pib、AVR-Pita1和AVR-Pi9基因多型性鑑定及族群動態分析 | zh_TW |
| dc.title | Identification of AVR-Pib, AVR-Pita1 and AVR-Pi9 genotypic polymorphism and population dynamics of rice blast fungus in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | Liliek Sulistyowati(Liliek Sulistyowati),Abdul Latief Abadi(Abdul Latief Abadi) | |
| dc.contributor.oralexamcommittee | 鍾嘉綾(Chia-Lin Chung),陳榮坤(Rong-Kuen Chen) | |
| dc.subject.keyword | 稻熱病,稻熱病菌,基因對基因關係,無毒基因,軍備競賽, | zh_TW |
| dc.subject.keyword | Rice blast disease,Magnaporthe oryzae,Gene-for-gene,AVR gene,Arms and race, | en |
| dc.relation.page | 206 | |
| dc.identifier.doi | 10.6342/NTU202100716 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1702202110273300.pdf 未授權公開取用 | 26.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
