Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71097
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖(Nien-Tsu Huang)
dc.contributor.authorYuh-Jen Hwongen
dc.contributor.author黃郁蓁zh_TW
dc.date.accessioned2021-06-17T04:52:49Z-
dc.date.available2018-08-16
dc.date.copyright2018-08-16
dc.date.issued2017
dc.date.submitted2018-07-30
dc.identifier.citation[1] D. J. Stearns-Kurosawa, M. F. Osuchowski, C. Valentine, S. Kurosawa, and D. G. Remick, “The pathogenesis of sepsis,” Annual review of pathology: mechanisms of disease, vol. 6, pp. 19-48, 2011.
[2] N. Panoskaltsis, C. Reid, and S. Knight, “Quantification and cytokine production of circulating lymphoid and myeloid cells in acute myelogenous leukaemia1,” Leukemia, vol. 17, no. 4, pp. 716, 2003.
[3] W. Chen, N.-T. Huang, X. Li, Z. T. F. Yu, K. Kurabayashi, and J. Fu, “Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization,” Frontiers in oncology, vol. 3, 2013.
[4] C.-H. Hsu, C. Chen, D. Irimia, and M. Toner, “Fast sorting of CD4+ T cells from whole blood using glass microbubbles,” Technology, vol. 3, no. 01, pp. 38-44, 2015.
[5] M. Roussel, C. Benard, B. Ly‐Sunnaram, and T. Fest, “Refining the white blood cell differential: the first flow cytometry routine application,” Cytometry Part A, vol. 77, no. 6, pp. 552-563, 2010.
[6] E. M. Choi, M. D. Geschwind, C. Deering, K. Pomeroy, A. Kuo, B. L. Miller, J. G. Safar, and S. B. Prusiner, “Prion proteins in subpopulations of white blood cells from patients with sporadic Creutzfeldt-Jakob disease,” Laboratory investigation; a journal of technical methods and pathology, vol. 89, no. 6, pp. 624, 2009.
[7] T. Hooghe, J. Hill, D. Oosterlynck, P. Koninckx, and C. Bambra, “Endometriosis: Effect of endometriosis on white blood cell subpopulations in peripheral blood and peritoneal fluid of baboons,” Human reproduction, vol. 11, no. 8, pp. 1736-1740, 1996.
[8] J. Choe, H. H. Guo, and G. van den Engh, “A dual-fluorescence reporter system for high-throughput clone characterization and selection by cell sorting,” Nucleic acids research, vol. 33, no. 5, pp. e49-e49, 2005.
[9] M. E. Piyasena, and S. W. Graves, “The intersection of flow cytometry with microfluidics and microfabrication,” Lab on a Chip, vol. 14, no. 6, pp. 1044-1059, 2014.
[10] BIO-RAD. 'Flow Cytometry Basics Guide,' https://www.bio-rad-antibodies.com/static/2016/fc-guide/flow-cytometry-basics-guide.pdf.
[11] K. E. Herold, and A. Rasooly, Lab on a Chip Technology: Biomolecular separation and analysis: Horizon Scientific Press, 2009.
[12] J. P. Beech, P. Jönsson, and J. O. Tegenfeldt, “Tipping the balance of deterministic lateral displacement devices using dielectrophoresis,” Lab on a Chip, vol. 9, no. 18, pp. 2698-2706, 2009.
[13] G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools for cell biological research,” Nano today, vol. 5, no. 1, pp. 28-47, 2010.
[14] M. Werner, F. Merenda, J. Piguet, R.-P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab on a Chip, vol. 11, no. 14, pp. 2432-2439, 2011.
[15] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Analytical and bioanalytical chemistry, vol. 397, no. 8, pp. 3249-3267, 2010.
[16] Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab on a Chip, vol. 14, no. 4, pp. 626-645, 2014.
[17] C. W. Yung, J. Fiering, A. J. Mueller, and D. E. Ingber, “Micromagnetic–microfluidic blood cleansing device,” Lab on a Chip, vol. 9, no. 9, pp. 1171-1177, 2009.
[18] K. Hoshino, Y.-Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab on a Chip, vol. 11, no. 20, pp. 3449-3457, 2011.
[19] P. Chen, Y.-Y. Huang, G. Bhave, K. Hoshino, and X. Zhang, “Inkjet-print micromagnet array on glass slides for immunomagnetic enrichment of circulating tumor cells,” Annals of biomedical engineering, vol. 44, no. 5, pp. 1710-1720, 2016.
[20] O. Osman, S. Toru, F. Dumas-Bouchiat, N. Dempsey, N. Haddour, L.-F. Zanini, F. Buret, G. Reyne, and M. Frenea-Robin, “Microfluidic immunomagnetic cell separation using integrated permanent micromagnets,” Biomicrofluidics, vol. 7, no. 5, pp. 054115, 2013.
[21] C. Sun, H. Hassanisaber, R. Yu, S. Ma, S. S. Verbridge, and C. Lu, “Paramagnetic structures within a microfluidic channel for enhanced immunomagnetic isolation and surface patterning of cells,” Scientific reports, vol. 6, pp. 29407, 2016.
[22] A. Gross, J. Schoendube, S. Zimmermann, M. Steeb, R. Zengerle, and P. Koltay, “Technologies for single-cell isolation,” International journal of molecular sciences, vol. 16, no. 8, pp. 16897-16919, 2015.
[23] M. He, J. S. Edgar, G. D. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets,” Analytical chemistry, vol. 77, no. 6, pp. 1539-1544, 2005.
[24] W.-H. Tan, and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proceedings of the National Academy of Sciences, vol. 104, no. 4, pp. 1146-1151, 2007.
[25] D. Di Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab on a Chip, vol. 6, no. 11, pp. 1445-1449, 2006.
[26] J. R. Rettig, and A. Folch, “Large-scale single-cell trapping and imaging using microwell arrays,” Analytical chemistry, vol. 77, no. 17, pp. 5628-5634, 2005.
[27] M. C. Park, J. Y. Hur, H. S. Cho, S.-H. Park, and K. Y. Suh, “High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging,” Lab on a Chip, vol. 11, no. 1, pp. 79-86, 2011.
[28] J. Y. Park, M. Morgan, A. N. Sachs, J. Samorezov, R. Teller, Y. Shen, K. J. Pienta, and S. Takayama, “Single cell trapping in larger microwells capable of supporting cell spreading and proliferation,” Microfluidics and nanofluidics, vol. 8, no. 2, pp. 263-268, 2010.
[29] C.-H. Lin, Y.-H. Hsiao, H.-C. Chang, C.-F. Yeh, C.-K. He, E. M. Salm, C. Chen, M. Chiu, and C.-H. Hsu, “A microfluidic dual-well device for high-throughput single-cell capture and culture,” Lab on a Chip, vol. 15, no. 14, pp. 2928-2938, 2015.
[30] V. I. Furdui, and D. J. Harrison, “Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems,” Lab on a Chip, vol. 4, no. 6, pp. 614-618, 2004.
[31] J. Qiu, Y. Zhou, H. Chen, and J.-M. Lin, “Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics,” Talanta, vol. 79, no. 3, pp. 787-795, 2009.
[32] Y.-y. Huang, K. Hoshino, P. Chen, C.-h. Wu, N. Lane, M. Huebschman, H. Liu, K. Sokolov, J. W. Uhr, and E. P. Frenkel, “Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system,” Biomedical microdevices, vol. 15, no. 4, pp. 673-681, 2013.
[33] Y. Hirayama, T. Miyake, and K. Hono, “Rare-Earth Lean Hard Magnet Compound NdFe12N,” JOM, vol. 67, no. 6, pp. 1344-1349, 2015.
[34] P. Chen, Y.-Y. Huang, K. Hoshino, and J. X. Zhang, “Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells,” Scientific reports, vol. 5, 2015.
[35] P. Chen, Y.-Y. Huang, K. Hoshino, and X. Zhang, “Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips,” Lab on a Chip, vol. 14, no. 3, pp. 446-458, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71097-
dc.description.abstract在人類血液中的白血球源自於造血幹細胞,主要負責人體的免疫反應。它的種類繁多,可由功能及表現分成不同亞群,且是一種異質性 (Heterogeneity) 很高的細胞族群。異質性代表每個單獨的細胞都存在基因、特性及表現上的差異。根據研究發現其可能是造成疾病復發或無法根治的原因,目前傳統群體分析的技術只能觀察到細胞的綜合表現,忽略細胞之間的差異。所以針對此類細胞而言,單細胞分析 (Single-cell analysis) 格外重要。
微流道是一種在微米尺度上操作流體的技術,具有體積小、價格低廉、可處理低濃度樣本等優點。其中結合磁外力的微流道系統 (Microfluidic immunomagnetic assay) 更具備了兩項優勢,特別適合運用在分離白血球亞群上:其一,相對於流體動力學以結構進行分離,會受到樣本間尺寸大小差異的限制,磁珠運用抗體抗原原理進行標定的技術使它能夠從同尺寸大小的白血球亞群 (White blood cell subpopulation) 中篩選出目標細胞;其二,相對於光學或介電泳法,磁場外力非直接接觸細胞,研究顯示能保有大部分(~100%) 細胞活性,利於後續的觀察及分析。然而,被捕捉在晶片上的細胞通常不規則的分散並有聚集的情形,不能直接做單細胞分析。若欲對捕捉的細胞進行單細胞分析,則需轉移到合適的單細胞捕捉平台,而這個過程須承擔細胞損失或遭受污染的風險。
為提供一個可快速從血液或病液中分離出特定白血球亞群,並進行單細胞分析的微流道晶片,本研究開發一結合磁力及微流井 (Microwell) 的微流道系統,旨在將細胞分離及單細胞捕捉的功能結合在同一個晶片上。未來期望此系統可直接讓使用者通入微量病液或血液,快速篩選出目標細胞並以單顆細胞的解析度捕捉於晶片上,提供一個在原位觀察及分析單細胞的平台,並減少原本從細胞分離裝置轉移到單細胞分析平台所需消耗的人力以及降低細胞受到污染或損失的風險。相信此整合性微小化的生醫晶片有潛力提供病患免疫狀態監控、疾病早期偵測及癌症預防的服務。
zh_TW
dc.description.abstractWhite blood cells (WBC) are important components of the immune system in a human body, responsible for protection against bacteria, viruses and invading parasites. The proportion, counts and cytokine production activities of the leukocyte subsets alternate in the presence of infections, malignancies, inflammation and so on, which indicates that the quantitative and qualitative understanding of white blood cell subpopulation can facilitate the diagnosis of various diseases.
Single cell analysis can be used to identify the subtypes of heterogeneous immune cells population, which leads to precise immune status monitoring. To achieve single cell analysis, cell separation and single cell trapping technique are essential to acquire the target cells for investigation. Microfluidic immunomagnetic assay is a preferable cell separation platform as the gentle, non-direct contact of the magnetic force preserves the viability of the cells while biomarker-based labeling can ensure high specificity cell separation. However, due to the characteristics of a magnet, the target cells are usually trapped in clusters, therefore to achieve single cell analysis, transportation to another suitable platform is necessary. However, this risks cell contamination and cell loss.
To address the above problem, we designed a microfluidic device chip integrating microwell and permanent magnet system to enable highly specific immunomagnetic single cell trapping. With the function of signal cell counting and further analysis, the device can potentially provide useful information to facilitate rapid and accurate analysis of immune status monitoring or early-stage autoimmune disease or cancer diagnosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:52:49Z (GMT). No. of bitstreams: 1
ntu-106-R04945024-1.pdf: 8192437 bytes, checksum: 206cbe5d8e5cc4c9196f6a7701df91df (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 2
1.2.1 Microfluidics for cell separation and trapping 3
1.2.2 Microfluidics based on magnetic force 4
1.2.3 Microfluidic immunomagnetic assays 5
1.2.4 Microfluidic immunomagnetic assays integrated with small-scale micromagnets 7
1.2.5 Microfluidics for single cell trapping 9
1.2.6 Summary 11
1.3 Research Motivation 14
1.4 Thesis Structure 14
Chapter 2 Experimental Design 16
2.1 The Permanent Magnet 16
2.2 Scaling Law in a Magnetic Microfluidic System 18
2.2.1 Inverted Microwell Setting 18
2.2.2 The Relationship between Drag Force and Magnetic Force 19
Chapter 3 Materials and Methods 21
3.1 The Microfluidics Microwell Device Design 21
3.2 Fabrication of the Microfluidic Microwell Device 22
3.2.1 Photolithography 22
3.2.2 Soft lithography 25
3.3 System setup 28
3.4 Reagent and Sample Preparation 29
3.4.1 Mixed beads 29
3.4.2 Cell labeling 30
3.5 Data Analysis 31
Chapter 4 Simulation 33
4.1 Magnetic Field Simulation 33
4.2 The Washing Step 34
Chapter 5 Results and Discussion 36
5.1 Magnetic beads separation and trapping experiment 36
5.1.1 With/ without microwell 36
5.1.2 Flow rate adjustment 38
5.1.3 Beads trapping performance under different magnetic versus non-magnetic beads ratio 40
5.2 THP-1 Cell Trapping Experiment 42
5.2.1 Labelled THP-1 trapping in microwell 43
5.2.2 THP-1 Cell Labeling Under Different Beads Concentration 44
5.2.3 Labelled THP-1 trapping in larger microwell 46
Chapter 6 Conclusion 49
Chapter 7 Future Work 51
References 52
dc.language.isoen
dc.subject微流井zh_TW
dc.subject單細胞捕捉zh_TW
dc.subject磁力zh_TW
dc.subject微流道系統zh_TW
dc.subjectmicrowellen
dc.subjectmicrofluidic immunomagnetic assayen
dc.subjectsingle-cell trappingen
dc.title可進行免疫磁珠標定單細胞捕捉之磁性微流井微流道晶片zh_TW
dc.titleA Microfluidic Device Integrating Microwell with Permanent Magnet System for Immunomagnetic Single Cell Trappingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林致廷(Chih-Ting Lin),董奕鍾(Yi-Chung Tung),許聿翔
dc.subject.keyword單細胞捕捉,磁力,微流井,微流道系統,zh_TW
dc.subject.keywordsingle-cell trapping,microfluidic immunomagnetic assay,microwell,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201801968
dc.rights.note有償授權
dc.date.accepted2018-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved