請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71074完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊士進(Shih-Chin Yang) | |
| dc.contributor.author | Neng-Jie Yang | en |
| dc.contributor.author | 楊能傑 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:51:39Z | - |
| dc.date.available | 2021-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-30 | |
| dc.identifier.citation | [1] C. Zwyssig, J. W. Kolar, and S. D. Round, 'Megaspeed Drive Systems: Pushing Beyond 1 Million r/min,' IEEE/ASME Transactions on Mechatronics, vol. 14, pp. 564-574, 2009.
[2] T. Raminosoa, B. Blunier, D. Fodorean, and A. Miraoui, 'Design and Optimization of a Switched Reluctance Motor Driving a Compressor for a PEM Fuel-Cell System for Automotive Applications,' IEEE Transactions on Industrial Electronics, vol. 57, pp. 2988-2997, 2010. [3] T. Noguchi, Y. Takata, Y. Pyamashita, Y. Komatsu, and S. Ibaraki, '220,000-r/min, 2-kW PM Motor Drive for Turbocharger,' Elect. Eng. Jpn., 2007. [4] 'Volvo to Test flywheel-KERS Hybrid Cars. Available: http://articles.sae.org/9925/.',2018/6/20. [5] 'Autonomous Agile Aerial Robots. Available: http://www.kongtechnology.com/2013/04/26/the-future-is-near/.',2018/6/21. [6] 'Dental Drill by Dr. Nava Gabbay. Available: http://www.madehow.com/Volume-3/Dental-Drill.html.',2018/6/23. [7] A. Tüysüz, C. Zwyssig, and J. W. Kolar, 'A Novel Motor Topology for High-Speed Micro-Machining Applications,' IEEE Transactions on Industrial Electronics, vol. 61, pp. 2960-2968, 2014. [8] A. Boglietti, A. Cavagnino, A. Tenconi, and S. Vaschetto, 'Key Design Aspects of Electrical Machines for High-speed Spindle Applications,' in IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1735-1740. [9] L. Barhoumi, H. Bemri, and D. Soudani, 'Discretization of Uncertain Linears Systems with Time Delay via Euler's and Tustin's Approximations,' in 2016 4th International Conference on Control Engineering & Information Technology (CEIT), pp. 1-6. [10] B. Song, L. Xu, and X. Lu, 'A Comparative Study on Tustin Rule based Discretization Methods for Fractional Order Differentiator,' in 2014 4th IEEE International Conference on Information Science and Technology, pp. 515-518. [11] R. J. Kerkman and T. M. Rowan, 'Voltage-controlled Current-regulated PWM Inverters [for motor drive applications],' IEEE Transactions on Industry Applications, vol. 26, pp. 244-251, 1990. [12] J. Jinhwan, L. Sunkyoung, and N. Kwanghee, 'PI Type Decoupling Control Scheme for High Speed Operation of Induction Motors,' in PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972, 1997, pp. 1082-1085 vol.2. [13] M. Zhao, H. Zhao, and H. Chen, 'A Dynamic-decoupling Controller of Current for Permanent Magnet Synchronous Motor,' in 2017 29th Chinese Control And Decision Conference (CCDC), pp. 3939-3944. [14] F. Briz, M. W. Degner, and R. D. Lorenz, 'Analysis and Design of Current Regulators using Complex Vectors,' IEEE Transactions on Industry Applications, vol. 36, pp. 817-825, 2000. [15] K. Hyunbae and R. D. Lorenz, 'Improved Current Regulators for IPM Machine Drives using On-line Parameter Estimation,' in Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), pp. 86-91 vol.1. [16] H. Zhang, H. Xu, C. Fang, and C. Xiong, 'Internal Model Decoupling Control of Direct-drive Permanent Magnet Synchronous Motor based on Disturbance Observer,' in 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), pp. 1-6. [17] L. Harnefors and H. P. Nee, 'Model-based Current Control of AC Machines using the Internal Model Control Method,' IEEE Transactions on Industry Applications, vol. 34, pp. 133-141, 1998. [18] B.-H. Bae and S.-K. Sul, 'A Compensation Method for Time Delay of Full-digital Synchronous Frame Current Regulator of PWM AC Drives,' IEEE Transactions on Industry Applications, vol. 39, pp. 802-810, 2003. [19] J.-S. Yim, S.-K. Sul, B.-H. Bae, N. R. Patel, and S. Hiti, 'Modified Current Control Schemes for High-Performance Permanent-Magnet AC Drives With Low Sampling to Operating Frequency Ratio,' IEEE Transactions on Industry Applications, vol. 45, pp. 763-771, 2009. [20] J. Holtz, Q. Juntao, J. Pontt, J. Rodriguez, P. Newman, and H. Miranda, 'Design of Fast and Robust Current Regulators for High-power Drives based on Complex State Variables,' IEEE Transactions on Industry Applications, vol. 40, pp. 1388-1397, 2004. [21] K. K. Huh and R. D. Lorenz, 'Discrete-Time Domain Modeling and Design for AC Machine Current Regulation,' in 2007 IEEE Industry Applications Annual Meeting, 2007, pp. 2066-2073. [22] Z. Novak and M. Novak, 'Implementation of a Novel Angular Hall Encoder for Field Oriented Control of High Speed and Experimental Motors,' in 2016 17th International Conference on Mechatronics - Mechatronika (ME), pp. 1-7. [23] 'RLS : rotary and linear motion sensors, Available : https://www.rls.si/en/products/rotary-magneticencoders/incremental-encoders/shaft.' [24] P. L. Jansen and R. D. Lorenz, 'Transducerless Position and Velocity Estimation in Induction and Salient AC Machines,' IEEE Transactions on Industry Applications, vol. 31, pp. 240-247, 1995. [25] M. J. Corley and R. D. Lorenz, 'Rotor Position and Velocity Estimation for a Salient-pole Permanent Magnet Synchronous Machine at Standstill and High Speeds,' IEEE Transactions on Industry Applications, vol. 34, pp. 784-789, 1998. [26] Y.-D. Yoon, S.-K. Sul, S. Morimoto, and K. Ide, 'High-Bandwidth Sensorless Algorithm for AC Machines Based on Square-Wave-Type Voltage Injection,' IEEE Transactions on Industry Applications, vol. 47, pp. 1361-1370, 2011. [27] S. Kim, J.-I. Ha, and S.-K. Sul, 'PWM Switching Frequency Signal Injection Sensorless Method in IPMSM,' IEEE Transactions on Industry Applications, vol. 48, pp. 1576-1587, 2012. [28] J.-L. Chen, S.-K. Tseng, and T.-H. Liu, 'Implementation of High-performance Sensorless Interior Permanent-magnet Synchronous Motor Control Systems using a High-frequency Injection Technique,' IET Electric Power Applications, vol. 6, pp. 533-544, 2012. [29] S.-K. Tseng, T.-H. Liu, and J.-L. Chen, 'Implementation of a Sensorless Interior Permanent Magnet Synchronous Drive based on Current Deviations of Pulse-width Modulation Switching,' IET Electric Power Applications, vol. 9, pp. 95-106, 2015. [30] K. Hyunbae, M. C. Harke, and R. D. Lorenz, 'Sensorless Control of Interior Permanent-magnet Machine Drives with Zero-phase Lag Position Estimation,' IEEE Transactions on Industry Applications, vol. 39, pp. 1726-1733, 2003. [31] G.-R. Chen, S.-C. Yang, and K. Li, 'Position Sensing of Permanent Magnet Machine Position Sensorless Drive at High Speed with Low Sample over Rotor Operating Frequency Ratio,' in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), pp. 1205-1209. [32] B.-H. Bae, S.-K. Sul, J.-H. Kwon, and J.-S. Byeon, 'Implementation of Sensorless Vector Control for Super-high-speed PMSM of Turbo-compressor,' IEEE Transactions on Industry Applications, vol. 39, pp. 811-818, 2003. [33] S.-C. Yang and G.-R. Chen, 'High-Speed Position-Sensorless Drive of Permanent-Magnet Machine Using Discrete-Time EMF Estimation,' IEEE Transactions on Industrial Electronics, vol. 64, pp. 4444-4453, 2017. [34] H. Kim, M. W. Degner, J. M. Guerrero, F. Briz, and R. D. Lorenz, 'Discrete-Time Current Regulator Design for AC Machine Drives,' IEEE Transactions on Industry Applications, vol. 46, pp. 1425-1435, 2010. [35] A. Altomare, A. Guagnano, F. Cupertino, and D. Naso, 'Discrete-Time Control of High-Speed Salient Machines,' IEEE Transactions on Industry Applications, vol. 52, pp. 293-301, 2016. [36] M. Hinkkanen, H. A. A. Awan, Z. Qu, T. Tuovinen, and F. Briz, 'Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design,' IEEE Transactions on Industry Applications, vol. 52, pp. 1530-1541, 2016. [37] L. Schwager, A. Tüysüz, C. Zwyssig, and J. W. Kolar, 'Modeling and Comparison of Machine and Converter Losses for PWM and PAM in High-Speed Drives,' IEEE Transactions on Industry Applications, vol. 50, pp. 995-1006, 2014. [38] A. Pugachev, 'Induction Motor Temperature Influence on Scalar Control Systems Efficiency,' in 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 1-5. [39] X. Huang, Q. Tan, L. Li, J. Li, and Z. Qian, 'Winding Temperature Field Model Considering Void Ratio and Temperature Rise of a Permanent-Magnet Synchronous Motor With High Current Density,' IEEE Transactions on Industrial Electronics, vol. 64, pp. 2168-2177, 2017. [40] S. Bolognani, A. Faggion, L. Peretti, and M. Zigliotto, 'Parameter Sensitivity Analysis of Two Low-cost Sensorless Induction Motor Drives,' in 2008 IEEE Power Electronics Specialists Conference, pp. 43-49. [41] S. Bolognani, L. Peretti, and M. Zigliotto, 'Parameter Sensitivity Analysis of an ImprovedOpen-Loop Speed Estimate forInduction Motor Drives,' IEEE Transactions on Power Electronics, vol. 23, pp. 2127-2135, 2008. [42] B. Chen, W. Yao, F. Chen, and Z. Lu, 'Parameter Sensitivity in Sensorless Induction Motor Drives With the Adaptive Full-Order Observer,' IEEE Transactions on Industrial Electronics, vol. 62, pp. 4307-4318, 2015. [43] R. Kumar and S. Das, 'Eigenvalue-based Relative Parameter Sensitivity Analysis for Optimised Performance of Sensorless Induction Motor Drives,' IET Electric Power Applications, vol. 10, pp. 723-734, 2016. [44] P. Schrangl, T. Ohtsuka, and L. d. Re, 'Parameter Sensitivity Reduction of Nonlinear Model Predictive Control for Discrete-time Systems,' in 2017 11th Asian Control Conference (ASCC), 2017, pp. 2131-2136. [45] T. Aas, J. S. Asrud, and H. V. Khang, 'Parameter Sensitivity of Flux-linkage based Sensorless Control for Permanent Magnet Synchronous Motors,' in 2017 20th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-5. [46] S. Noguchi, H. Mabuchi, K. Suzuki, and H. Dohmaeki, 'Study of Parameter Variations Compensation in Sensorless Control of PMSM,' in 2016 19th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6. [47] 'SMQ enterprise CO., LTD. Available : https://www.callsmq.com/dealer/item/73-ceramic-ball-bearing.html,',2018/6/30. [48] 'Westwind Air Bearings - air bearing technology, Available : http://www.westwind-airbearings.com/airBearing/index.html.',2018/7/1. [49] 'Siemens AG, Simotics AMB. Available : http://www.siemens.com.tw/dfpd/simotics-amb/,' ,2018/7/2. [50] A. Gilson, S. Tavernier, M. Gerber, C. Espanet, F. Dubas, and D. Depernet, 'Design of a Cost-efficient High-speed High-efficiency PM Machine for Compressor Applications,' in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3852-3856. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71074 | - |
| dc.description.abstract | 本篇論文主要討論高速主軸馬達控制器的數位化問題,為了減少馬達體積與成本,主軸馬達常需要在數萬轉以上的高轉速下運作,但轉速到一定程度時,取樣頻率與轉子電氣頻率的比例會越趨不足,如三萬轉以上時,相電流取樣點數在每個電氣週期中僅剩五個點,大幅降低馬達控制的穩定性。為了在主軸馬達的轉速區間實現穩定的磁場向量控制,控制器在高速時取樣點數不足的離散化問題必須納入考量。
文中探討各種不同的補償方法和三種近似離散轉換在高速時的控制性能,檢測當取樣點數不足時,不同的近似轉換是否會有不同的結果,經過比較後發現,透過正確的脈寬調變電壓落後補償和電感解耦合,連續轉離散域的電流控制器可以在高速時維持其穩定性,但是其閉路電流控制的表現很大程度決定於整體頻寬和主軸馬達的參數量值。本研究製造出一顆八極的內藏式永磁主軸馬達來進行測試,其最高轉速為三萬兩千轉,對應取樣頻率與轉子電氣頻率的比值為4.7,以實驗驗證三種不同的近似轉換控制器之高速性能差別,此外也透過不同主軸馬達模型分析,測試不同的馬達參數,並配合近似轉換方法的選用提出高速主軸馬達的設計建議。 | zh_TW |
| dc.description.abstract | This thesis investigates digital implementation issues on spindle machine drives at high speed. The machine operating speed is designed beyond 30krpm where the ratio of drive sample frequency fsample over rotor electrical frequency fe is less than 5. Because digital microcontrollers are used in variable frequency machine drives to realize the field-oriented control (FOC), the discretized effects must be considered to maintain the controller stability at high speed under low ratios of fsample/fe.
In this thesis, the machine current controller based on three continuous controller design and approximation methods are compared at low fsample/fe. It is shown that the linear approximation might be able to maintain the controller stability if the voltage delay and inductance cross-coupling are perfectly compensated. However, the closed-loop drive performance strongly dependents on the overall controller bandwidth and machine parameters. An 8-pole interior PM machine with a maximum speed at 32-kprm where fsample/fe = 4.7 is experimentally tested to compare the high speed performance among three controllers. This thesis includes the design guideline of PM spindle machine drive for high speed operation based on the simulation comparison of different machine characteristics. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:51:39Z (GMT). No. of bitstreams: 1 ntu-107-R05522819-1.pdf: 11338181 bytes, checksum: 98ed70ec8c2d43a748c06478f5b0fab0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 論文口試委員審定書 iii
誌謝 v 中文摘要 vii ABSTRACT ix 目錄 xi 圖目錄 xv 表目錄 xxiii 符號彙編 xxv Chapter 1 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1 離散化控制器近似方法 3 1.2.2 馬達驅動器電感耦合效應 4 1.2.3 馬達驅動器數位採樣落後 6 1.2.4 無位置感測驅動 8 1.2.5 全數位控制器設計 11 1.2.6 方波vs.弦波驅動 13 1.2.7 參數對電流控制器的影響 14 1.3 研究目的 16 1.3.1 近似離散控制器的高速性能評估 16 1.3.2 近似離散控制器與全離散控制器性能比較 17 1.3.3 高速電流控制器參數之影響 17 1.3.4 高速馬達設計建議 17 1.4 論文大綱 18 Chapter 2 連續域控制器離散化 19 2.1 連續域高速馬達控制器設計 19 2.2 高速馬達數位化模型 20 2.3 前向差分(尤拉法) 22 2.4 後向差分 24 2.5 雙線性轉換 26 Chapter 3 近似離散控制器性能比較 31 3.1 近似離散控制器補償效果 31 3.2 近似離散轉換比較 34 3.3 時間常數幅值影響 41 3.4 全數位控制器 44 3.5 參數估測敏感度 46 Chapter 4 實驗結果 49 4.1 主軸馬達製造與組裝 49 4.2 馬達驅動軟體架構 51 4.3 實驗測試設備 52 4.4 雙線性補償性能實測 53 4.5 近似轉換離散控制比較 55 4.6 近似轉換與全離散控制比較 62 4.7 參數敏感度測試 67 4.8 計算時間與記憶體容量比較 72 Chapter 5 結論與未來方向 75 5.1 結論 75 5.1.1 近似轉換離散控制器 75 5.1.2 全離散與近似離散控制器 76 5.1.3 參數敏感度 76 5.2 未來工作 76 5.2.1 軸承組裝 76 5.2.2 高速加載平台 77 參考文獻 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 向量控制 | zh_TW |
| dc.subject | 離散域近似轉換 | zh_TW |
| dc.subject | 數位控制器 | zh_TW |
| dc.subject | 電機驅動 | zh_TW |
| dc.subject | discrete-time approximation | en |
| dc.subject | machine drives | en |
| dc.subject | digital controller | en |
| dc.subject | field oriented control | en |
| dc.title | 三萬轉極高速工具機主軸馬達磁場導向控制器之設計與性能實測 | zh_TW |
| dc.title | Field Oriented Control and Experimental Verification of 30-krpm Ultra High Speed Spindle Motor for Machine Tools | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊勝明(Sheng-Ming Yang),劉承宗(Cheng-Zong Liu),劉添華(Tian-Hua Liu),許煜亮(Yu-Liang Hsu) | |
| dc.subject.keyword | 電機驅動,數位控制器,離散域近似轉換,向量控制, | zh_TW |
| dc.subject.keyword | machine drives,digital controller,discrete-time approximation,field oriented control, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU201802176 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 11.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
