請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71071完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林增毅(Tzeng-Yih Lam) | |
| dc.contributor.author | Ho-Tung Lin | en |
| dc.contributor.author | 凌荷童 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:51:30Z | - |
| dc.date.available | 2025-08-16 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | Anderson, T.W., Darling, D.A., 1954. A test of goodness of fit. J. Am. Stat. Assoc. 49, 765–769. Bailey, R.L., Dell, T.R., 1973. Quantifying diameter distributions with Weibull Function. For. Sci. 19(2), 97-104. Baker, F.S., 1923. Notes on the composition of even aged stands. J. For. 21(7), 712–717. Bliss, C.I., Reinker, K.A., 1964. A lognormal approach to diameter distributions in even-aged stands. For. Sci. 10, 350 –360. Borders, B.E., Wang, M., Zhao, D. 2008. Problems of scaling plantation plot diameter distributions to stand level. For. Sci. 54(3), 349–355. Burkhart, H.E., Tomé, M., 2012. Modeling forest trees and stands. Springer, Dordrecht, the Netherlands. Cao, Q.V., 2004. Predicting parameters of a Weibull function for modeling diameter distribution. For. Sci. 50(5), 682-685. Cao, Q.V., Coble, D.W., 2014. Deriving a diameter distribution from stand table data. For. Sci. 60(4), 628-635. Chang, S.T., Cheng, S.S., Wang, S.Y., 2001. Antitermitic activity of essential oils and components from Taiwnia (Taiwania cryptomerioides). Journal of Chemical Ecology. 27(4), 717-724. Chang, S.T., Wang, S.Y., Wu, C.L., Su, Y.C., Kuo, Y.H., 1999. Antifungal compounds in the ethyl acetate soluble fraction of the extractives of Taiwania (Taiwania cryptomerioides Hayata) Heartwood. Holzforschung. 53(5), 487-490. Chen, L.C., Hunag, G.M., 1999. Basal area growth and yield model for Taiwania plantations of different planting densities in the Liukuei Experimental Forest: a comparison. Taiwan J. For. Sci. 14(3), 345-349. Chen, L.C., Hunag, G.M., Chang, T.Y., Horng, F.W., 1996. The effect of planting density on the growth of Taiwan-fir plantations at Lu-Kuei area. Taiwan J. For. Sci. 11(1), 1-11. Chen, L.C., Hunag, G.M., Lin, J.S., Chiou, C.R., 1997. Growing stock and growth estimation of Taiwania plantations in the Liukuei area. Taiwan J. For. Sci. 12(3), 319-327. Chen, Y.C., Yang, M.X., Wang, C.H., 2010. Individual tree diameter growth and mortality models for Chamaecyparis formosensis and Taiwania cryptomerioides plantations. Ilan University Journal of Bioresources. 6(1), 71-77. Cheng, C.P., Hsu, K.Y., Lin, C.S., Tsai, A.J., 2010. Long-term growth trend of Taiwania Plantations in Xitou area of Central Taiwan. Jour. Exp. For. Nat. Taiwan Univ. 24(3), 147-156. Chiu, C.M., Nigh, G., Chien, C.T., Ying, C.C., 2010a. Diameter distribution models for thinned taiwania (Taiwania Cryptomerioides) plantations. Aust. For. 73(1), 3-11. Chiu, C.M., Nigh, G., Chien, C.T., Ying, C.C., 2010b. Growth patterns of plantation-grown Taiwania cryptomerioides following thinning. Aust. For. 73(4), 246-253. Clutter, J.L., Bennett, F.A., 1965. Diameter distributions in old-field slash-pine plantations. Ga. For. Res. Counc. Rep. 13, 9. De’ath, G. Boosted trees for ecological modeling and prediction. Ecology, 88(1), 243-251. Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to Boosted Regression Trees. Journal of Animal Ecology, 77, 802-813. Feng, F.L., Lin, T.Y., 1992. Stand tree growth simulated modelling system built in Taiwan. Bulletin of the Experimental Forest of National Chung Hsing University. 14(2), 55-58. Feng, F.L., Yang, Y.C., 1988. Studies on the applicabilities of the Bertalanffy’s model to the growth of seven species in Taiwan. Quarterly Journal of Chinese Forestry. 21(1), 47-64. Fonseca, T.F., Marques, C.P., Parresol, B.P., 2009. Describing maritime pine diameter distributions with Johnson’s SB distribution using a new all-parameter recovery approach. For. Sci. 55(4), 367-373. Franklin, J.F., Thomas, A.S., Pelt, R.V., Carey, A.B., Thornburgh, D.A., Berge, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., Chen, J., 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manage. 155, 399-423. Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics. 29, 1189–1232. Friedman, J.H., 2002. Stochastic gradient boosting. Computational Statistics and Data Analysis. 38, 367–378. Friedman, J.H., Meulman, J.J., 2003. Multiple additive regression trees with application in epidemiology. Statistics in Medicine, 22, 1365-1381. Gadow, K.V., Hui, G., 1999. Modeling forest development. Kluwer Academic Publishers, Dodrecht, the Netherlands. Hafley, W.L., Schreuder, H.T., 1977. Statistical distributions for fitting diameter and height data in even-aged stands. Can. J. For. Res. 7, 481–487. Hastie, T., Tibshirani, R., Friedman, J.H., 2001. The elements of statistical learning: data mining, inference, and prediction. Springer-Verlag, New York. Henningsen, A., Hamann, J.D., 2019. Package’’systemfit’’. URL https://cran.r-project.org/web/packages/systemfit/index.html. Hijmans, R.J., Phillips, S., Leathwick, J., Elith, J., 2017. Package ‘dismo’. URL https://cran.r-project.org/web/packages/dismo/dismo.pdf. Hong, L.B., 1974. The study of the growth of Taiwania (Taiwania cryptomerioides Hayata) plantation. The Study Report of Taiwan Forestry Research Institute, 236. Hyink, D.M., Moser, J.W., 1983. A generalized framework for projecting forest yield and stand structure using diameter distributions. For. Sci. 29(1), 85-95. Jang, W., Eskelson, B.N.I., Marshall, P.L., Moss, I. 2018. A stand table projection system for interior Douglas-fir in British Columbia, Canada. For. Ecol. Manage. 409, 434-443. Kint, V., Vansteenkiste, D., Aertsen, W., Vos, B.D., Bequet, R., Acker, J.V., Muys, B., 2012. Forest structure and soil fertility determine internal stem morphology of Pedunculate oak: a modelling approach using boosted regression trees. Eur. J. Forest Res. 131, 609–622. Lam, T.Y., Fletcher, C. Ramage, B.S., Doll, H.M., Joann, C.L., Nur-Zati, A.M., Butod, E., Kassim, A.R., Harrison, R.D., Potts, M.D., 2014. Using habitat characteristics to predict faunal diversity in tropical production forests. Biotropica. 46(1), 50-57. Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T., Taylor, P., 2006. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series. 321, 267–281. Lin, C.S., Horng, F.W., 1991. The growth of Taiwania cryptomerioides at Lu-Kuei area. Bull. Taiwan. For. Res. Inst. New Series. 6(3), 229-248 Liu, C., Zhang, S.Y., Lei, Y., Newton, P.F., Zhang, L., 2004. Evaluation of three methods for predicting diameter distributions of black spruce (Picea mariana) plantations in central Canada. Can. J. For. Res. 34, 2424–2432. Liu, S.W., Chon, L.C., Wang, Y.N., Chen, H.T., Cheng, C.P., 2009. Study of growth and carbon sequestration of Taiwania plantation in central Taiwan. Jour. Exp. For. Nat. Taiwan Univ. 23(3), 201-212. Liu, S.W., Wang, Y.N., Tsai, M.S., Hung, C.Y., Yang, S.I., Cheng, C.P., 2012. Study of Taiwania plantation growth across different stand ages in Xitou. Jour. Exp. For. Nat. Taiwan Univ. 26(2), 103-111. Lo-cho, C.N., Chung, H.H., Chiu, C.M., 1992. Effects of yhinning and pruning on Taiwania (Taiwania cryptomerioides Hayata) plantation in Lu-Kuei Area. Bull. Taiwan. For. Res. Inst. New Series. 7(4), 291-304 Mabvubrira, D., Maltamo, M., Kangas, A., 2002. Predicting and calibrating diameter distributions of Eucalyptus grandis (Hill) maiden plantations in Zimbabwe. New Forest. 23(3), 207-233. Mäkinen, H., Isomäki, A., 2004. Thinning intensity and long-term changes in increment and stem form of Scots pine trees. For. Ecol. Manage. 203, 21-34. Maltamo, M., Puumalainen, J., Päivinen, R., 1995. Comparison of Beta and Weibull functions for modelling basal area diameter distribution in stands of pinus sylvestris and picea abies. Scandinavian Journal of Forest Research. 10, 284-295. Massey, F.G., 1951. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68 –78. Nelson, T.C., 1964. Diameter distribution and growth of loblolly pine. For. Sci. 10, 105–115. Newton, P.F., Lei, Y., Zhang, S.Y., 2005. Stand-level diameter distribution yield model for black spruce plantations. For. Ecol. Manage. 209, 181-192. Parresol, B.R., 1999. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45, 573–593. Poudel, K.P., Cao, Q.V., 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. For. Sci. 59(2), 243-252. R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D., 2020. Package ‘MASS’. URL https://cran.r-project.org/web/packages/MASS/MASS.pdf. Robinson, A., 2004. Preserving correlation while modelling diameter distributions. Can. J. For. Res. 34, 221–232. Schapire, R., 2003. The boosting approach to machine learning – an overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002 (eds D.D. Denison, M. H. Hansen, C. Holmes, B. Mallick B. Yu). Springer, New York. Siipilehto J., Mehtätalo L., 2013. Parameter recovery vs. parameter prediction for the Weibull distribution validated for Scots pine stands in Finland. Silva Fennica. 47(4), article id 1057. Siipilehto, J., Sarkkola, S., Mehtätalo, L., 2007. Comparing regression estimation techniques when predicting diameter distributions of Scots Pine on drained peatlands. Silva Fennica. 41(2), 333–349. Thomopoulos, N.T., 2017. Statistical distributions applications and parameter estimates. Springer, Cham, Switzerland. Wang, D.H., Hsieh, H.C., Tang, S.C., Chung, C.H., 2010. Stand growth simulation of a Taiwania plantation in the Liouguei Area. Taiwan J. For. Sci. 25(2), 155-169. Wang, D.H., Tang, S.C., Hsieh, H.C., Chung, C.H., Lin, C.Y., 2012. Distance-dependent competition measures for individual tree growth on a Taiwania plantation in the Liuguei area. Taiwan J. For. Sci. 27(3), 215-227. Wang, D.H., Wang, C.H., Kao, Y.B., Wu, Y.J., 2004. Growth competition in mixed plantations of Taiwania and Red Alder in the Duona area. Taiwan J. For. Sci. 19(4), 337-351. Wang, S.Y., Chang, S.T., Su, Y.C., Kuo, Y.H., 1997. Studies on the extractives of Taiwania (Taiwania cryptomerioides Hayata): a review. Jour. Exp. For. Nat. Taiwan Univ. 11 (4), 67–81. Whittingham, M.J., Stephens, P.A., Bradbury, R.B., Freckleton, R.P., 2006. Why do we still use stepwise modeling in ecology and behaviour ? J. Anim. Ecol. 75, 1182-1189. Yao, R.D., 1993. Studies of the Relation Between Growth and Stand Density of Taiwania Plantations. Jour. Exp. For. Nat. Taiwan Univ. 7(4), 1-12. Zellner, A., 1962. An efficient method of estimating Seemingly Unrelated Regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57, 348–368. 姚榮鼎、梁治文、謝祈元、劉金淓(1995)臺灣杉及紅檜人工林形質生長與密度關係之研究。農委會造林與森林撫育之研究83年度研究彙報。27-52. 劉業經、呂福原、歐辰雄 (1994) 臺灣樹木誌。國立中興大學農學院第7號叢書。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71071 | - |
| dc.description.abstract | 本研究目的是建立經過疏伐經營後的臺灣杉直徑分布模型。我們使用兩處由 林業試驗所設置的臺灣杉(Taiwania cryptomerioides)試驗林來建立模型。這兩 處試驗林分別位於臺灣南部的六龜與藤枝地區,氣候以及環境條件相似。六龜試 驗林是由三十六個樣區所組成的兩公頃林分,而藤枝試驗林則是二十四個樣區所 組成的 1.6 公頃林分。首先,我們將比較四個機率分布模型(Probability density functions)對於臺灣杉直徑分布的適合度(Goodness of fit)。在這四個模型中,三 參數韋伯分布(Three-parameters Weibull function)為最適合模型。再來,我們將 林分因子分為疏伐前與疏伐後兩組來預測韋伯分布的三個參數。為了選出具有影 響力的林分因子,本研究使用機器學習領域中的增幅式迴歸樹(Boosted Regression Tree)來做變數的選擇。根據迴歸樹結果,擁有較高相對貢獻度 (Relative Contribution)的林份因子會被留下並且利用彷彿無相關迴歸 (Seemingly Unrelated Regression)建立韋伯參數與林份因子的線性模型。根據結 果,直徑分布的偏度和峰度在疏伐前與形狀參數呈負相關,而距離疏伐的年份與 尺度因子呈正相關,平方平均直徑則與位置參數呈正相關。在疏伐後,直徑分布 的偏度影響了所有的韋伯參數,而距離疏伐的年份與平方平均直徑則持續分別與 尺度因子和位置因子呈正相關。 | zh_TW |
| dc.description.abstract | The purpose of this study is to predict future stand diameter distribution for Taiwania cryptomerioides plantations under different thinning intensity. We used data from two experimental forests established by the Taiwan Forest Research Institute (TFRI), which are Liouguei Experimental Forests and Tengjhih Experimental Forests. Areas of the two study sites are 2 and 1.44 ha, and they are divided into 36 and 24 plots, respectively. Elevation of both sites is about 1400 m a.s.l., and the weather conditions are similar between these two sites. Firstly, we would compare goodness of fit of four probability density functions(PDF). The parameters of PDFs describing diameter distribution were estimated by the method of maximum likelihood. The best PDF for fitting diameter distribution of our data was three-parameters Weibull function (3Weibull). Afterwards, we modelled the estimated 3Weibull parameters as the responses of stand condition predictors. Two sets of stand conditions were prepared, one before thinning and another after thinning so that two regression models were built for the estimated Weibull parameters. To identify stand condition predictors in the two sets that are significant, we apply Boosted Regression Tree (BRT) as the method of variable selection, which is a statistical learning method with accurate prediction. For each set of predictors, stand condition predictors that had high relative contributions are retained. These predictors were used to build linear models for each estimated 3Weibull iv parameters with Seemingly Unrelated Regression (SUR). The linear models showed that influential predictors and directional effects differed across two predictors sets and 3Weibull parameter. In before thinning models, the skewness and the kurtosis of diameter distribution most affected the shape parameter, and both associated negatively with it. Years after thinning significantly increased the scale parameter, and the quadratic mean diameter positively influenced the location parameter. In after thinning models, all 3Weibull parameters were strongly linked to the skewness of diameter distribution. Years after thinning and the quadratic mean diameter still significantly affected and positively associated with the scale and the location parameter, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:51:30Z (GMT). No. of bitstreams: 1 U0001-1908202012582200.pdf: 3352189 bytes, checksum: 8c3e261928d3fcd0853eb001b23cc81c (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 中文摘要 iii Abstract iv Contents vi List of Figures viii List of Tables x List of Abbreviations xi Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 Taiwania 5 2.1.1 Statistical Model of Taiwania 6 2.2 Diameter Distribution Model 8 2.2.1 PDF for Quantifying Diameter Distribution 11 2.3 Boosted Regression Trees 13 2.3.1 Setting and Result of BRT 15 Chapter 3 Material and Methods 19 3.1 Materials 19 3.2 Method 21 3.2.1 Fitting Diameter Distribution Models 21 3.2.2 Evaluation of Diameter Distribution Models 21 3.2.3 Variable Selection by BRT 24 3.2.4 Seemingly Unrelated Regression Models 26 Chapter 4 Results 28 4.1 PDF for Fitting Diameter Distribution 28 4.1.1 Fitted Parameters of Diameter Distribution 28 4.1.2 Ranking 29 4.2 Boosted Regression Trees 31 4.2.1 Learning Rate 31 4.2.2 Variable Selection 33 4.3 Seemingly Unrelated Regression 40 Chapter 5 Discussion 45 Chapter 6 Conclusion 50 Reference 52 | |
| dc.language.iso | en | |
| dc.subject | 臺灣杉 | zh_TW |
| dc.subject | 直徑分布模式 | zh_TW |
| dc.subject | 疏伐 | zh_TW |
| dc.subject | 韋伯函數 | zh_TW |
| dc.subject | 增幅式迴歸樹 | zh_TW |
| dc.subject | 母數預測模式 | zh_TW |
| dc.subject | Weibull function | en |
| dc.subject | diameter distribution models | en |
| dc.subject | parameter prediction models | en |
| dc.subject | Taiwania cryptomerioides | en |
| dc.subject | thinning | en |
| dc.subject | Boosted Regression Tress | en |
| dc.title | 應用增幅式迴歸樹方法建立臺灣杉直徑分布模型 | zh_TW |
| dc.title | The Use of Boosted Regression Tree in Modeling Diameter Distribution of Taiwania cryptomerioides Plantations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱志明(Chih-Ming Chiu),鄭舒婷(Su-Ting Cheng) | |
| dc.subject.keyword | 臺灣杉,母數預測模式,直徑分布模式,韋伯函數,疏伐,增幅式迴歸樹, | zh_TW |
| dc.subject.keyword | Boosted Regression Tress,diameter distribution models,parameter prediction models,Taiwania cryptomerioides,thinning,Weibull function, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202004077 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202012582200.pdf 未授權公開取用 | 3.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
