請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71066完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃振康 | |
| dc.contributor.author | Yu-Chi Lin | en |
| dc.contributor.author | 林于祺 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:51:13Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2018-08-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-30 | |
| dc.identifier.citation | 呂錫民. (2016). 液體除濕劑材料和除濕機綜述 -上. 中華水電冷凍空調, 116, 48-55.
陳可杰,黃聯海,李宗起,李婉怡,陳益昌。(2011)。統計學。二版。112-115。台北。新加坡商聖智學習亞洲私人有限公司台灣分公司. 經濟部能源局。除濕機容許耗用能源基準與能源效率分級標示事項、方法及檢查方式。 國家標準(CNS)網路服務系統. (2016). CNS2726鼓風機實驗法. 國家標準(CNS)網路服務系統. (2017). CNS12492除濕機 Abdel-Salam, A. H., Ge, G., & Simonson, C. J. (2014). Thermo-economic performance of a solar membrane liquid desiccant air conditioning system. Solar Energy, 102, 56-73. doi:10.1016/j.solener.2013.12.036 Abdel-Salam, A. H., & Simonson, C. J. (2016). State-of-the-art in liquid desiccant air conditioning equipment and systems. Renewable and Sustainable Energy Reviews, 58, 1152-1183. doi:10.1016/j.rser.2015.12.042 Arundel, A. V., Sterling, E. M., Biggin, J. H., & Sterling, T. D. (1986). Indirect health effects of relative humidity in indoor environments. Environmental Health Perspectives, 65, 351-361. Bansal, P., Jain, S., & Moon, C. (2011). Performance comparison of an adiabatic and an internally cooled structured packed-bed dehumidifier. Applied Thermal Engineering, 31(1), 14-19. doi:10.1016/j.applthermaleng.2010.06.026 Bassuoni, M. M. (2011). An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant. Energy, 36(5), 2628-2638. doi:10.1016/j.energy.2011.02.004 Chaudhari, S. K., & Patil, K. R. (2002). Thermodynamic Properties of Aqueous Solutions of Lithium Chloride. Physics and Chemistry of Liquids, 40(3), 317-325. doi:10.1080/0031910021000004883 Das, R. S., & Jain, S. (Producer). (2013). Experimental performance of indirect air–liquid membrane contactors for liquid desiccant cooling systems. Energy. De Lucas, A., Donate, M., & Rodríguez, J. F. (2003). Vapor Pressures, Densities, and Viscosities of the (Water + Lithium Bromide + Sodium Formate) System and (Water + Lithium Bromide + Potassium Formate) System. Journal of Chemical & Engineering Data, 48(1), 18-22. doi:10.1021/je010312x De Lucas, A., Donate, M., & Rodríguez, J. F. (2006). Vapour pressures, densities, and viscosities of the (water + lithium bromide + potassium acetate) system and (water + lithium bromide + sodium lactate) system. The Journal of Chemical Thermodynamics, 38(2), 123-129. doi:10.1016/j.jct.2005.04.007 Donate, M., Rodriguez, L., Lucas, A. D., & Rodríguez, J. F. (2006). Thermodynamic evaluation of new absorbent mixtures of lithium bromide and organic salts for absorption refrigeration machines. International Journal of Refrigeration, 29(1), 30-35. doi:10.1016/j.ijrefrig.2005.05.005 Dow Chemical Company (2003) Calcium Chloride Handbook. Dow Chemical Co., Michigan, USA Ertas, A., Anderson, E. E., & Kiris, I. (1992). Properties of a new liquid desiccant solution - Lithium chloride and calcium chloride mixture. Solar Energy, 49(3). doi:10.1016/0038-092X(92)90073-J Fu, H.-X., & Liu, X.-H. (2017). Review of the impact of liquid desiccant dehumidification on indoor air quality. Building and Environment, 116, 158-172. doi:10.1016/j.buildenv.2017.02.014 Gandhidasan, P. (2002). Prediction of pressure drop in a packed bed dehumidifier operating with liquid desiccant. Applied Thermal Engineering, 22(10), 1117-1127. doi:10.1016/S1359-4311(02)00031-5 Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1), 89. doi:10.6028/jres.081A.011 Hassan, A. A. M., & Hassan, M. S. (2008). Dehumidification of air with a newly suggested liquid desiccant. Renewable Energy, 33(9), 1989-1997. doi:10.1016/j.renene.2007.12.002 Hui, D. (2007). Sustainable building technologies for hot and humid climates. Paper presented at the Invited Paper for the Joint Hong Kong and Hangzhou Seminar for Sustainable Building. Jain, S., & Bansal, P. K. (2007). Performance analysis of liquid desiccant dehumidification systems. International Journal of Refrigeration, 30(5), 861-872. doi:10.1016/j.ijrefrig.2006.11.013 Katoh, S. (2009). Biochemical engineering : a textbook for engineers, chemists and biologists. Weinheim: Weinheim : Wiley-VCH. Kumar, R., & Asati, A. (2016). Experimental study on performance of celdek packed liquid desiccant dehumidifier. Heat and Mass Transfer, 52(9), 1821-1832. doi:10.1007/s00231-015-1704-2 Kumar, R., Dhar, P. L., & Jain, S. (2011). Development of new wire mesh packings for improving the performance of zero carryover spray tower. Energy, 36(2), 1362-1374. doi:10.1016/j.energy.2010.09.040 La, D., Dai, Y. J., Li, Y., Wang, R. Z., & Ge, T. S. (2010). Technical development of rotary desiccant dehumidification and air conditioning: A review. Renewable and Sustainable Energy Reviews, 14(1), 130-147. doi:10.1016/j.rser.2009.07.016 Li, X.-W., Zhang, X.-S., Wang, F., Zhao, X., & Zhang, Z. (2014). Research on ration selection of mixed absorbent solution for membrane air-conditioning system. Energy Conversion and Management, 89, 111-119. doi:10.1016/j.enconman.2014.09.045 Liu, X. H., & Jiang, Y. (2009). Handling zone dividing method in packed bed liquid desiccant dehumidification/regeneration process. Energy Conversion and Management, 50(12), 3024-3034. doi:10.1016/j.enconman.2009.07.022 Longo, G. A., & Gasparella, A. (2006). Experimental Analysis on Chemical Dehumidification of Air in a Packed Column by Hygroscopic Salt Solution: Comparison between Structured and Random Packings. HVAC&R Research, 12, 713-729. doi:10.1080/10789669.2006.10391203 Lowenstein, A., Slayzak, S., & Kozubal, E. (2006). A Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications. (47454), 397-407. doi:10.1115/ISEC2006-99079 Mehta, J. R., Shah, N. M., & Patel, K. N. (2016). A review on internally cooled liquid desiccant air dehumidifier. Paper presented at the Proceedings–International Conference on Recent Trends in Engineering and Technology (ICRTET 2016), Nasik, India. Mei, L., & Dai, Y. J. (2008). A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renewable and Sustainable Energy Reviews, 12(3), 662-689. doi:10.1016/j.rser.2006.10.006 Mirzaei, F., Eghbali, S. R., Mahdavinejad, M., Rohani, R., & Nobakhti, M. (2014). Proposing a More Efficient Model to Enhance Natural Ventilation in Residential Buildings. Environment and Ecology Research, 2(5), 194-205. OxyChem. CALCIUM CHLORIDE HANDBOOK- A Guide to Physical Properties. Patil, K. R., Tripathi, A. D., Pathak, G., & Katti, S. S. (1990). Thermodynamic properties of aqueous electrolyte solutions. 1. Vapor pressure of aqueous solutions of lithium chloride, lithium bromide, and lithium iodide. Journal of Chemical & Engineering Data, 35(2), 166-168. doi:10.1021/je00060a020 Pearce, J. N., & Nelson, A. F. (1932). THE VAPOR PRESSURES OF AQUEOUS SOLUTIONS OF LITHIUM NITRATE AND THE ACTIVITY COEFFICIENTS OF SOME ALKALI SALTS IN SOLUTIONS OF HIGH CONCENTRATION AT 25°. Journal of the American Chemical Society, 54(9), 3544-3555. doi:10.1021/ja01348a008 Rafique, M. M., Gandhidasan, P., & Bahaidarah, H. M. S. (2016). Liquid desiccant materials and dehumidifiers – A review. Renewable and Sustainable Energy Reviews, 56, 179-195. doi:10.1016/j.rser.2015.11.061 Rane, M. V., Kota Reddy, S. V., & Easow, R. R. (2005). Energy efficient liquid desiccant-based dryer. Applied Thermal Engineering, 25(5), 769-781. doi:10.1016/j.applthermaleng.2004.07.015 Rumble, J. (2017). CRC Handbook of Chemistry and Physics 98th edn. Sahlot, M., & Riffat, S. B. (2016). Desiccant cooling systems: a review. International Journal of Low-Carbon Technologies, 11(4), ctv032. doi:10.1093/ijlct/ctv032 Sherwood, T. K. (1975). Mass transfer. New York: New York : McGraw-Hill. Stokes, R. H., & Robinson, R. A. (1949). Standard Solutions for Humidity Control at 25° C. Industrial & Engineering Chemistry, 41(9), 2013-2013. doi:10.1021/ie50477a041 Tanaka, K., & Tamamushi, R. (1991). A physico-chemical study of concentrated aqueous solutions of lithium chloride. Zeitschrift für Naturforschung A, 46(1-2), 141-147. United States Environmental Protection Agency. (1996). Product Properties Test Guidelines OPPTS 830.7950 Vapor Pressure. Vemulapalli, G. K. (1993). Physical chemistry. Englewood Cliffs, N.J.: Prentice Hall. Wang, L., Xiao, F., Zhang, X., & Kumar, R. (2016). An experimental study on the dehumidification performance of a counter flow liquid desiccant dehumidifier. International Journal of Refrigeration, 70, 289-301. doi:10.1016/j.ijrefrig.2016.06.005 Wang, X., Cai, W., Lu, J., Sun, Y., & Ding, X. (2013). A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system. Applied Energy, 111, 449-455. doi:10.1016/j.apenergy.2013.05.026 Weiss, N. A. (2010). Introductory Statistics: Pearson; 9 edition (Dec 27 2010). Zhao, X., Li, X., & Zhang, X. (2016). Selection of optimal mixed liquid desiccants and performance analysis of the liquid desiccant cooling system. Applied Thermal Engineering, 94, 622-634. doi:10.1016/j.applthermaleng.2015.09.037 AMC MINERALS SALT TABLES。網址: amc@imdexlimited.com。上網日期:2018-06-13 空氣密度計算公式(權威)-密度表。網址: http://www.midubiao.com/286.html。上網日期:2018-07-01 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71066 | - |
| dc.description.abstract | 液體除濕系統相較於固體除濕系統,有較低再生溫度、彈性的再生時間及可分離的除濕與再生部,加入製冷裝置即可成為空調的另一種選擇。液體除濕空調系統相較於一般傳統空調系統,有較低的運作成本及低階能源需求,空氣品質及濕度控制方面也有較佳的表現,由此可看出液體除濕劑除濕系統深具發展潛力。
此研究將建構出一個大型液體除濕單元,對影響除濕劑質傳之參數進行探討,並針對液滴夾帶問題 (carry-over) 製作外加量測系統且建立指標。測量近幾年出現的混和溶液表面蒸汽壓,找到最佳混合比例以達到節省成本的效果,最後建構一個小型液體除濕單元,測量較昂貴除濕溶液的效果。 本研究經內部風場模擬結果,採用高度為200 mm之外加裝置應用於大型除濕系統進行液滴夾帶問題量測,經平均風速及液滴殘留程度決定使用KDM421除霧網進行除濕實驗。大型及小型除濕系統測試各種操作參數,如空氣流量、入口空氣溫度等。大型除濕系統搭配氯化鋰溶液的實驗結果,換算為一般市售除濕機的除濕能力為19.48 L/d ,能源因數值為 2.50 L/kWh,落於能源效率分級的第2級。小型除濕系統氯化鈣、氯化鋰及醋酸鉀溶液的實驗結果,顯示各除濕溶液所對應的表面蒸汽壓與空氣水分移除率有所關聯。 關於混和除濕液的表面蒸汽壓量測,CaCl2+LiCl及LiCl+MgCl2混和除濕液蒸汽壓,皆隨著氯化鋰比例的增加而下降。LiBr+CaCl2混和除濕液蒸汽壓會隨著溴化鋰比例增加而有上升的趨勢。混和除濕液成本部分,CaCl2+LiCl混和除濕液成本,隨著氯化鋰比例上升而增加,根據成本與蒸汽壓考量,推薦比例為70 %CaCl2+30 %LiCl。LiCl+MgCl2混和除濕液部分,因採用的氯化鎂單價較氯化鋰貴,成本隨著氯化鋰比例增加而下降。LiBr+CaCl2混和除濕液成本隨著溴化鋰比例上升而增加。 | zh_TW |
| dc.description.abstract | Compared with solid desiccant dehumidification systems, liquid desiccant dehumidification systems are characterized by the low regeneration temperature, flexible regeneration time, and separable dehumidification and regeneration unit. Liquid desiccant dehumidification systems with thereafter cooling devices, which come with lower operating cost, lower-grade energy demand, and better performance in air quality and humidity control, could be an alternate for air conditioning. Therefore, there is great development potential in liquid desiccant dehumidification systems.
A large liquid desiccant dehumidifier has been constructed in this study. The parameters affecting the mass transfer of liquid desiccant have been discussed. The additional measurement system and the indicators for desiccant carry-over have been made and established. Vapor pressures of the mixed liquid desiccant aqueous solution reported in recent years have been measured in order to find the optimum mixing ratio for cost reduction. Finally, a small liquid desiccant dehumidifier has been constructed to test some more expensive liquid desiccant solutions. In this study, with the CFD results in the large liquid desiccant dehumidifier, the additional measurement device with a height of 200 mm was designed and used in the system for the carry-over problem. The KDM421 demister was used on dehumidifier experiments because of the high average wind speed and the low degree of droplet residue. For the large and small dehumidifiers, various operating parameters such as air flow rate, inlet air temperature, and so on were explored. The performance of the large dehumidifier with lithium chloride solution was equivalent to a commercial dehumidifier with the dehumidifying capacity of 19.48 L/d and the energy factor of 2.50 L/kWh, falling on the second level of dehumidifier energy efficiency grade. The experimental results of calcium chloride, lithium chloride and potassium acetate solutions in the small dehumidifier show that the surface vapor pressure of the liquid desiccant solution is strongly related to the moisture removal rate in air. Regarding the vapor pressure measurement of the mixed liquid desiccant solutions, the vapor pressure of the CaCl2+LiCl and LiCl+MgCl2 solutions both decreases with the increase of lithium chloride proportion. The vapor pressure of the LiBr+CaCl2 solutions increases with the increase of lithium bromide proportion. About the cost of mixed solutions, the cost of the CaCl2+LiCl solution increases with the increase of lithium chloride proportion. According to the cost and vapor pressure of the CaCl2+LiCl solution, the optimum ratio is 70% CaCl2+ 30% LiCl. Because the magnesium chloride used is more expensive than the lithium chloride, the cost of LiCl+MgCl2 solution decreases with the increase of lithium chloride proportion. The cost of the LiBr+CaCl2 solution increases with the increase of lithium bromide proportion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:51:13Z (GMT). No. of bitstreams: 1 ntu-107-R05631037-1.pdf: 3452476 bytes, checksum: e3baa398618aaa11fa981beb3e173776 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 符號說明 xi 第一章 前言 1 1-1背景 1 1-2研究目的 3 第二章 文獻探討 5 2-1液體除濕系統 5 2-2液體除濕劑 9 2-3液體除濕系統潛在問題 14 2-4液體除濕系統除濕性能之影響因素 17 2-5填充床中的單相質傳(Singe-phase mass transfer) 19 第三章 實驗設備與方法 20 3-1除濕實驗之實驗設備 20 3-1-1 大型除濕系統 20 3-1-2 液滴夾帶測試系統 23 3-1-3 小型除濕系統 25 3-1-4 量測設備 28 3-2除濕溶液蒸汽壓量測之實驗設備 30 3-3實驗方法 32 3-3-1 填料層數決定 32 3-3-2 液滴夾帶及風速量測實驗 32 3-3-3 大型系統除濕實驗 34 3-3-4 小型系統除濕實驗 36 3-3-5 除濕性能分析 38 3-3-6 相關係數 40 3-3-7 除濕溶液蒸汽壓量測實驗 40 第四章 結果與討論 42 4-1填料層數實驗 42 4-2液滴夾帶問題之外加量測裝置實驗 43 4-2-1液滴夾帶問題之外加量測裝置尺寸 43 4-2-2液滴夾帶問題之外加量測裝置實驗 45 4-3風速量測實驗 46 4-4大型除濕系統除濕實驗 48 4-4-1不同天氣情形下之實驗 48 4-4-2入風口加濕情形下之實驗 50 4-4-3不同操作參數下之除濕實驗 52 4-5小型除濕系統除濕實驗 62 4-6除濕溶液蒸汽壓量測實驗 68 第五章 結論 77 5-1結論 77 5-2檢討與建議 78 參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 液體除濕 | zh_TW |
| dc.subject | 混和除濕劑 | zh_TW |
| dc.subject | 蒸汽壓 | zh_TW |
| dc.subject | 液滴夾帶 | zh_TW |
| dc.subject | carry-over | en |
| dc.subject | liquid desiccant dehumidification | en |
| dc.subject | mixed liquid desiccant | en |
| dc.subject | vapor pressure | en |
| dc.title | 液體除濕過程之操作參數探討 | zh_TW |
| dc.title | Investigation of Operating Parameters for Liquid Desiccant Dehumidification Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 方 煒,林怡均 | |
| dc.subject.keyword | 液體除濕,混和除濕劑,蒸汽壓,液滴夾帶, | zh_TW |
| dc.subject.keyword | liquid desiccant dehumidification,mixed liquid desiccant,vapor pressure,carry-over, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201802211 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
