Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71062
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張嘉升(Chia-Seng Chang)
dc.contributor.authorWun-Cin Huangen
dc.contributor.author黃文勤zh_TW
dc.date.accessioned2021-06-17T04:51:01Z-
dc.date.available2018-08-02
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citation1. K. S. Novoselov, A. K. Geim et. al., “Electric Field Effect in Atomically Thin Carbon Films”, Science 306, 666 (2004).
2. J.-N. Longchamp et. al., “Imaging protiens at the single-molecule level”, Proc. Natl. Acad. Sci. U. S. A. 114, 1474 (2017).
3. J.-N. Longchamp et. al., “Low-energy electron holographic imaging of individual tobacco mosaic virions”, Appl. Phys. Lett. 107, 133101 (2015).
4. A. Reina et. al., “Transferring and Identification of single- and few-layer graphene on arbitrary substrates”, J. Phys. Chem. C 112, 17741 (2008).
5. Y. C. Lin et. al., “Clean transfer of graphene for isolation and suspension”, ACS Nano 5, 2362 (2011).
6. A. Yulaev et. al., “Toward clean suspended CVD graphene”, RSC Adv. 6, 83954 (2016).
7. L. W. Hwang et. al., “Characterization of the cleaning process on a transferred graphene”, J. Vac. Sci. Technol. A 32, 050601 (2014).
8. Y. C. Lin et. al., “Graphene annealing: how clean can it be?” Nano Lett. 12, 414 (2012).
9. W. H. Lin et. al., “A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate”, ACS Nano 8, 1784 (2014).
10. I. Pasternak et. al., “Graphene films transfer using marker-frame method”, AIP Advances 4, 097133 (2014).
11. S. M. Shinde et. al., “Polymer-free graphene transfer on moldable cellulose acetate based paper by hot press technique”, Surf. Coat. Technol. 275, 369 (2015).
12. J.-N. Longchamp et. al., “Ultraclean freestanding graphene by platinum-metal catalysis”, J. Vac. Sci. Technol., B 31, 020605 (2013).
13. J.C. Meyer et. al., “Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene, Phys. Rev. Lett. 108, 196102 (2012).
14. J.-N. Longchamp et. al., “Low-energy electron transmission imaging of clusters on free-standing graphene”, Appl. Phys. Lett. 101, 113117 (2012).
15. T. Latychevskaia et. al., “Direct observation of individual charges and their dynamics on graphene by low-energy electron holography”, Nano Lett. 16, 5469 (2016).
16. W.H. Hsu et. al., “Low-energy electron point projection microscopy diffraction study of suspended graphene”, Appl. Surf. Sci. 423, 266 (2017).
17. A. Beyer et. al., “Low energy electron point source microscopy: beyond imaging” J. Phys.: Condens. Matter 22, 343001 (2010).
18. T. Latychevskaia et. al., “Practical algorithms for simulation and reconstruction of digital in-line holograms”, Appl. Opt. 54, 2424 (2015).
19. M. Krenkel et. al., “Transport of intensity phase reconstruction to solve the twin image problem in holographic x-ray imaging”, Opt. Express 21, 2220 (2013).
20. H. Virker et. al., “Low energy electron point source microscopy of two-dimensional carbon nanostructures”, Z. Phys. Chem. 225, 1433 (2011).
21. J.-N. Longchamp et. al., “Graphene Unit Cell Imaging by Holographic Coherent Diffraction”, Phys. Rev. Lett 110, 255501 (2013).
22. T. E. Madey et. al., “Faceting induced by ultrathin metal films: structure, electronic properties and reactivity”, Surf. Sci. 438, 191 (1999).
23. T. Y. Fu et. al., “Method of creating a Pd-covered single-atom sharp W pyramidal tip: mechanism and energetics of its formation” PhysRevB 64, 113401 (2001).
24. H. S. Kuo et. al., “Preparation and Characterization of Single-Atom Tips”, Nano Lett. 4, 2379 (2004).
25. C. C. Chang et. al., “A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter”, Nanotechnology 20, 115401 (2009).
26. W. T. Chang et. al., “Method of electrochemical etching of tungsten tips with controllable profiles”, Rev. Sci. Instrum., 83, 083704 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71062-
dc.description.abstract使用以單原子針為電子源的低能量點投影顯微鏡(point projection microscope, PPM in short)可以收取到樣品之高對比投影同軸電子全像圖(in-line hologram)。本篇論文中,我們使用PPM觀察懸空石墨烯表面(suspended graphene)的吸附物。本篇論文的工作,主要是為PPM找尋一套影像重建的方法,重建同軸電子全像圖,以得到高解析的樣品影像。第一部分,我們使用傳統全像術重建實驗全相圖,觀察到懸空石墨烯表面吸附物的結構與動態行為。然而,傳統電子全像術著名的Twin image問題使得重建影像殘留干涉條紋,大幅降低的影像解析度。為了解決Twin image問題,第二部分我們用模擬測試了transport intensity equation(TIE)方法的重建。TIE能夠用兩張或多張在些微不同樣品-屏幕間距記錄的全像圖,重建繞射平面上的相位。再藉由菲涅耳反向傳播(Fresnel backward propagation),可以計算出物體平面上的樣品穿透函數(transmission function)。模擬結果顯示TIE方法重建影像的解析度有大幅的提升。此外,我們也討論了樣品穿透函數振幅與相位的範圍以及實驗上信噪比可能會對重建造成的問題。zh_TW
dc.description.abstractHigh contrast projection in-line holograms of samples can be acquired by the low energy electron point projection microscope(PPM) based on a single-atom-tip(SAT) emitter. The main purpose of this work is to find an image reconstruction method for PPM, so high resolution images of sample can be obtained from reconstructed in-line holograms. In this thesis, we use PPM to investigate adsorbates on suspended graphene. In the first part, dynamics and structures of the adsorbates were reconstructed by a method of conventional digital holography. However, the resolution was apparently reduced because of a well-known twin-image problem. In the second part, a reconstruction method based on transport intensity equation (TIE) is tested by the simulation to solve the twin-image problem. Using two or more holograms recorded at slightly different sample-screen distances, the phase on the diffraction plane can be reconstructed by TIE. The exit wave in the object plane can then be computed by Fresnel backward propagation. In our simulation, the resolution of the images reconstructed by the TIE method is significantly improved. In additional, problems of reconstruction which caused by amplitude and phase of transmission function and the signal-to-noise ratio are discussed.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:51:01Z (GMT). No. of bitstreams: 1
ntu-107-R05222049-1.pdf: 3424765 bytes, checksum: f457e5c6d8615e6d656aa0c313670bc1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書………………………………………………………i
致謝 …………………………………………………………………ii
摘要 …………………………………………………………………iii
Abstract ………………………………………………………………iv
目錄 ……………………………………………………………………v
圖目錄 ………………………………………………………………viii
表目錄 …………………………………………………………………x
第一章 緒論 …………………………………………………………1
第二章 文獻回顧 ……………………………………………………4
2.1 電子輻射破壞 …………………………………………4
2.2 PPM觀察石墨烯樣品 ……………………………………5
2.3 單原子針做為PPM電子源 ……………………………7
2.4 PPM投影全像圖的影像重建 ……………………………8
第三章 實驗儀器與步驟 ……………………………………………13
3.1 儀器介紹 ……………………………………………13
3.1.1超高真空抽氣系統 ……………………………13
3.1.2顯微平台 ………………………………………14
3.1.3成像系統 ………………………………………14
3.2 單原子針置備 ………………………………………15
3.3 石墨烯樣品置備 ……………………………………17
第四章 傳統全像術之影像重建 ……………………………………19
4.1傳統全像圖的模擬與影像重建方法 …………………19
4.1.1任意光源全像圖的模擬與影像重建方法 ……19
4.1.2點光源全像圖的模擬與影像重建方法 ………21
4.1.3有限取樣與快速傅立葉轉換 ………………22
4.2實驗全像圖之影像重建 ………………………………23
4.2.1表面吸附物聚集行為 ………………………23
4.2.2表面吸附物位移行為 ………………………25
第五章 TIE方法之影像重建 ………………………………………26
5.1 TIE的推導與適用範圍 ………………………………26
5.2 TIE為基礎全像術影像重建法 ………………………27
5.3 TIE為基礎全像術之數值模擬 ………………………29
5.3.1 實數物體 ……………………………………29
5.3.2 複數物體 ……………………………………31
第六章 結論與未來展望 ……………………………………………38
參考文獻 ……………………………………………………………39
dc.language.isozh-TW
dc.subject低能量點投影顯微鏡zh_TW
dc.subjecttransport intensity equationzh_TW
dc.subject同軸電子全像圖zh_TW
dc.subjectTwin imagezh_TW
dc.subject單原子針zh_TW
dc.subjectin-line hologramsen
dc.subjectsingle-atom-tipen
dc.subjectlow energy electron point projection microscopeen
dc.subjectTwin image transporten
dc.subjectintensity equationen
dc.title低能量電子點投影顯微鏡全像模擬與影像還原zh_TW
dc.titleHolographic Simulations and Reconstructions of Low-energy Electron Point Projection Microscopyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor黃英碩(Ing-Shouh Hwang)
dc.contributor.oralexamcommittee陳健群(Chien-Chun Chen)
dc.subject.keyword單原子針,低能量點投影顯微鏡,同軸電子全像圖,Twin image,transport intensity equation,zh_TW
dc.subject.keywordsingle-atom-tip,low energy electron point projection microscope,in-line holograms,Twin image transport,intensity equation,en
dc.relation.page41
dc.identifier.doi10.6342/NTU201802151
dc.rights.note有償授權
dc.date.accepted2018-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved