請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71058
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許添本 | |
dc.contributor.author | Chun-Chia Chen | en |
dc.contributor.author | 陳俊嘉 | zh_TW |
dc.date.accessioned | 2021-06-17T04:50:50Z | - |
dc.date.available | 2023-08-07 | |
dc.date.copyright | 2018-08-07 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-31 | |
dc.identifier.citation | [1] 許添本、薛博元,「高速公路速率控制與匝道儀控最佳化協控模式之研究」,中華民國運輸學會2011年年會暨學術論文國際研討會,民國100年。
[2] 許添本、江宜穎,「國道五號高速公路壅塞VISSIM模擬模式之校估」,中華民國運輸學會2013年年會暨學術論文國際研討會,民國102年。 [3] 許添本、鄭鎧鋙、林育瑞,「高速公路連鎖式匝道儀控模式之研究」,中華民國運輸學會2010年年會暨學術論文國際研討會,民國99年。 [4] 許添本、黃崇宇、林育瑞,「高速公路匝道儀控與速率控制協控模式之研究」,中華民國運輸學會2009年年會暨學術論文國際研討會,民國98年。 [5] 許添本、江宜穎、張鈞凱,「高速公路主線速率漸變控制模式之研究_以國道五號為例」,中華民國運輸學會2013年年會暨學術論文國際研討會,民國102年。 [6] 張鈞凱,「高速公路可變速限聯合匝道儀控最佳化模式」,台灣大學土木工程研究所碩士論文,民國103年。 [7] 台中市政府交通局,「國一暨台 74 匝道及平面聯絡道號誌協控計畫期中報告」,民國106年。 [8] 林柏辰,「異常交通狀況下之高速公路基因模糊邏輯速限控制模式」,交通大學交通運輸研究所碩士論文,民國98年。 [9] 江宜穎,「高速公路壅塞模擬與主線速率漸變控制之研究」,台灣大學土木工程研究所碩士論文,民國102年。 [10] 鄭鎧鋙,「高速公路連鎖式匝道儀控模式之研究」,台灣大學土木工程研究所碩士論文,民國99年。 [11] 盧彥璁,「高速公路速率漸變控制策略之研究」,台灣大學土木工程研究所碩士論文,民國99年。 [12] 鐘仁傑,「模糊邏輯匝道儀控模式-細胞自動機之模擬分析」,交通大學交通運輸研究所碩士論文,民國97年。 [13] 鄒政修,「發展巨觀混合推進模式於高速公路匝道儀控之研究」,台灣大學土木工程研究所碩士論文,民國101年。 [14] 黃崇宇,「高速公路匝道儀控與速率控制協控模式之研究」,台灣大學土木工程研究所碩士論文,民國99年。 [15] 王雲慶,「應用基因模糊邏輯建構適應性匝道儀控系統」,逢甲大學交通工程與管理研究所碩士論文,民國94年。 [16] 賴建華,「適應性基因模糊邏輯號誌控制系統」,交通大學交通運輸研究所碩士論文,民國92年。 [17] 交通部運輸研究所,「2011年台灣地區公路容量手冊」,民國100年。 [18] 交通部運輸研究所,「高速公路匝道儀控智慧化之研究」,民國93年。 [19] 陸勇奇,「高速公路車流速度模擬及匝道交通管理-以台中地區為例」,東海大學資訊工程與科學在職專班碩士論文,民國91年。 [20] 林良泰、李建昌、許乃文,「延滯最小化之幹道號誌時制設計研究」,九十年國際道路交通安全與執法研討會,民國90年。 [21] 許勝翔,「混合車流之過飽和路段號誌最佳化模式研究」,台灣大學土木工程研究所碩士論文,民國100年。 [22] 顏上堯,「混合車流狀況下市區號誌交叉口車流運轉特性及容量參數研究」,台灣大學土木工程研究所碩士論文,民國75年。 [23] L. Chu, X. Yang, “Optimization of the ALINEA Ramp-metering Control Using Genetic Algorithm with Micro-simulation,” Proceedings of the 2003 TRB Board, 2003. [24] M. van den Berg, B. De Schutter, H. Hellendoorn, “Effects of On-ramp and Off-ramp Metering on Queue Forming in Urban Traffic Networks,” Proceedings of the 11th IFAC Symposium on Control in Transportation Systems, Delft, The Netherlands, pp. 130-135, 2006. [25] R. Braun, C. Kemper, F. Weichenmeier, “TRAVOLUTION - Adaptive Urban Traffic Signal Control with an Evolutionary Algorithm,” 2008. [26] A. Hegyi, B. De Schutter, H. Hellendoorn, T. van den Boom “Optimal Coordination of Ramp Metering and Variable Speed Control - An MPC Approach,” Proceedings of the 2002 American Control Conference, Anchorage, Alaska, pp. 3600-3605, 2002. [27] A. Spiliopoulou, M. Kontorinaki, M. Papageorgiou, P. Kopelias, “Macroscopic Traffic Flow Model Validation at Congested Freeway Off-ramp Areas,” Transportation Research Part C 41, pp. 18-29, 2014. [28] F. Weichenmeier, “Application of Adaptive Signal Control in Developing Countries,” traffic, 2017. [29] PTV Group, “PTV Balance User Manual,” 2017. [30] F. Weichenmeier, R. Hildebrandt, A. Szarata, “The TRISTAR and KRAKOW Systems - A PTV Balance and PTV Epics Case Study,” 2015. [31] K. Bogenberger, H. Keller, “An Evolutionary Fuzzy System for Coordinated and Traffic Responsive Ramp Metering,” Proceedings of 34th Annual Hawaiian International Conference on System Sciences, 2001. [32] T. P. Hsu, T. H. Hsieh, “Development of Ramp Metering Using Fuzzy Logic Control Algorithm on Freeway,” Journal of the Eastern Asia Society for Transportation Studies, Vol. 10, 2013. [33] H. M. Zhang, S. G. Ritchie, “Freeway Ramp Metering Using Artificial Neural Networks,” Transportation Research C, Vol. 5, No. 5, pp. 273-286, 1997. [34] A. Kotsialos, I. Papamichail, I. Margonis, M. Papageorgiou, “Hierarchical Nonlinear Model-Predictive Ramp Metering Control for Freeway Networks,” Proceedings of the 11th IFAC Symposium on Control in Transportation Systems, Delft, The Netherlands. 2006. [35] H. Taale, J. Slager, J. Rosloot, “The Assessment of Ramp Metering Based on Fuzzy Logic,” 3rd ITS World Congress in Orlando, 1996. [36] A. Hegyi, B. De Schutter, H. Hellendoorn, “Model Predictive Control for Optimal Coordination of Ramp Metering and Variable Speed Limits,” Transportation Research Part C, Vol. 13, No. 3, pp. 185-209, 2005. [37] T. Sasaki, T. Akiyama, “Traffic Control Process of Expressway by Fuzzy Logic,” Fuzzy Sets and Systems, Vol. 26, pp. 165-178, 1988. [38] S. F. Lee, Y. W. Teng, W.J. Wang, “Highway Ramp Control via Fuzzy Logic,” The 9th IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 274-278, 2000. [39] M. Raoufi, S. Ahuja, R. Hildebrandt, F. Weichenmeier, D. Lunardon, “A Comparison Between Logic-based and Optimization-based Adaptive Signal Control Systems, Using Micro-simulation,” No. 18-02001, 2018. [40] G.L. Chang, J. Wu, S. L. Cohen, “Integrated Real-time Ramp Metering Model for Nonrecurrent Congestion: Framework and Preliminary Results,” Transportation Research Record, No. 1446, pp. 56-65, 1994. [41] J. Lüßmann, B. Thormann, C. Kemper, R. Jildebrandt, F. Weichenmeier, “The Intelligent Transport System of TRISTAR - Theory Becomes Practice,” International Conference on Intelligent Transport Systems in Theory and Practice, 2017. [42] M. Papageorgiou, H. Hadj-Salem, J. Bloseville, “ALINEA: A Local Feedback Control Law for On-ramp Metering,” Transportation Research Record, No. 1320, pp. 58-64, 1991. [43] M. Papageorgiou, J. Bloseville, H. Hadj-Salem, “Modelling and Real-time Control of Traffic Flow on The Southern Part of Boulevard Périphérique in Paris: Part I: Modelling,” Transportation Research Part A, Vol. 24, pp. 345-359, 1990. [44] M. Papageorgiou, J. Bloseville, H. Hadj-Salem, “Modelling and Real-time Control of Traffic Flow on the Southern Part of Boulevard Périphérique in Paris: Part II: Coordinated On-ramp Metering,” Transportation Research Part A, Vol. 24, pp. 361-370, 1990. [45] M. Papageorgiou, J. Bloseville and H. Hadj-Salem, “Macroscopic Modelling of Traffic Flow on the Boulevard Périphérique in Paris,” Transportation Research Part B, Vol. 23, pp. 29-47, 1989. [46] M. Zhang, T. Kim, X. Nie, W. Jin, L. Chu, W. Recker, “Evaluation of On-ramp Control Algorithms,” 2001. [47] L. E. Lipp, L. J. Corcoran, G. A. Hickman, “Benefits of Central Computer Control for Denver Ramp-Metering System,” Transportation Research Record, No. 1320, 1991. [48] M. Hasan, “Evaluation of Ramp Control Algorithms Using a Micro Traffic Simulation Laboratory, MITSIM,” Diss. Massachusetts Institute of Technology, 1999. [49] S. Ahn, R. L. Bertini, B. Auffray, J. H. Ross, O. Eshel, “Evaluating the Benefits of a System-Wide Adaptive Ramp-Metering Strategy in Portland, Oregon,” Transportation Research Record, Vol. 2012, pp. 47-56, 2007. [50] M. Papageorgiou, H. Hadj-Salem, F. Middelham, “ALINEA Local Ramp Metering - Summary of Field Results,” Transportation Research Record, Vol. 1603, 1997. [51] P. Diao, Z. Wang, Z. Zhang, H. Cheng, “Traffic Signal Coordinated Control Optimization: A Case Study,” Control and Decision Conference (CCDC), 24th Chinese, IEEE, pp. 827-831, 2012. [52] E. Christofa, K. Aboudolas, A. Skabardonis, “Arterial Traffic Signal Optimization: A Person-based Approach,” Transportation Research Part C: Emerging Technologies, 66, pp. 27-47, 2016. [53] K. Wada, K. Usui, T. Takigawa, M. Kuwahara, “An Optimization Modeling of Coordinated Traffic Signal Control Based on the Variational Theory and Its Stochastic Extension,” Transportation Research Part B: Methodological, 2017. [54] Y. T. Wu, C. H. Ho, “The Development of Taiwan Arterial Traffic-adaptive Signal Control System and Its Field Test: A Taiwan Experience,” Journal of Advanced Transportation, 43.4, pp. 455-480, 2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71058 | - |
dc.description.abstract | 交通壅塞情形一直是許多民眾困擾的問題,不僅造成停等次數和旅行時間的增加,車輛排放的廢氣也因此變多,使空氣污染的情形惡化。為了提升道路使用效率,壅塞問題必須透過相關交通控制措施解決。
本研究以國道1號及台74線上下匝道與地面道路作為案例分析的對象,根據車輛偵測器資料,對研究範圍進行現況分析,結果指出大雅交流道和以大雅交流道為中心的周邊道路,會在某些時段發生嚴重的壅塞,如地面道路壅塞回堵至下匝道影響主線車流,及主線車輛過多導致壅塞向上游傳遞,造成上匝道之等候車隊。因此,本研究希望提出一套匝道與地面道路號誌最佳化協控模式,考量上下匝道及地面道路之車流,針對當時交通狀況求解最佳化之號誌時制,並計算儀控率,控制上下匝道車流,以提升路網績效,減緩壅塞情形。 本研究結合地面道路號誌最佳化模式以及模糊邏輯匝道儀控模式,建立號誌協控模式,對研究範圍內之路網進行控制。前者以號誌最佳化軟體Balance為基礎,每300秒根據車流狀況產生新的號誌時制,並於微觀模擬軟體Vissim直接更新;後者運用模糊邏輯演算法,選定高快速公路流量、地面道路流量、高快速公路車速、匝道佔有率、高快速公路上游佔有率及其下游佔有率六個狀態變數,並建立隸屬函數及模糊邏輯規則,以求出儀控率。此儀控率利用外掛軟體VisVap,導入模擬路網進行控制,直接於模擬路網中結合兩種模式。模擬結果顯示,對於1.5倍現況流量之路網,匝道儀控模式相對無實施儀控,能提升環中路、高快速公路西向以及部分上匝道之旅行速度;號誌協控模式則有效改善地面之壅塞情形,提升旅行速度並顯著降低行車延滯。 | zh_TW |
dc.description.abstract | Road congestion has always been a problem for many people. It causes increased travel time and more exhaust emissions from vehicles, which pollutes the air. In order to increase the efficiency of road use, congestion must be resolved through some relevant traffic control measurements.
The research takes the on-ramp and off-ramp of freeway No.1 and provincial highway No.74 and the surrounding ground road as an example for case study. According to the vehicle detector data, the current traffic situation of the research scope is analyzed. The results indicate that serious congestion occurs at certain times, some caused by congestion on the ground road where traffic waves travel backwards to the off-ramps and even the freeway mainline; some caused by too many vehicles on the freeway mainline where traffic waves propagates upstream, resulting in the queue on the on-ramps. Therefore, the research proposes a model coordinating ramp metering and ground road signal control optimization, which takes the traffic flow on the off-ramps, on-ramps, and the ground road into consideration. It optimizes the signal programs depending on the current traffic situation; and calculates the metering rate to control the flow inbound and outbound the freeway, which enhances the performance of the road network and reduces congestion. The research combines the ground road signal control optimization model and the fuzzy logic ramp metering model to create a coordinated control model for the road network within the study area. The former is based on the optimization software called Balance. It generates a new signal program according to the traffic flow situation every 300 seconds and is directly updated in the simulation software Vissim; the latter uses fuzzy logic algorithm, and the selected input variables include freeway flow, ground road flow, freeway speed, ramp occupancy, freeway upstream occupancy, and freeway downstream occupancy. The membership functions and fuzzy logic rules of them are established to determine the metering rate. This metering rate is applied in Vissim by the plug-in software VisVap to directly combine two models in the simulation road network. The simulation results show that for the road network where the flow is 1.5 times of the current situation, the ramp metering control model increases travel speeds of HuanZhong Road, westbound freeway, and some of the on-ramps compared to no control. Furthermore, the coordinated control model can effectively solve the congestion problem on the ground road, increases travel speeds and significantly reduces vehicle delay. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:50:50Z (GMT). No. of bitstreams: 1 ntu-107-R05521511-1.pdf: 4750418 bytes, checksum: 210f9ace4374095649875563840be84c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 2 1.2 研究目的 3 1.3 研究範圍 4 1.4 研究流程 5 1.5 研究方法 8 第二章 文獻回顧 9 2.1 匝道儀控 9 2.1.1 獨立型 11 2.1.2 連鎖型 15 2.1.3 整合型 23 2.2 PTV Balance號誌最佳化軟體 36 2.2.1 波蘭克拉科夫系統 36 2.2.2 印度德里 38 2.2.3 伊朗德黑蘭 39 2.3 幹道號誌控制 42 2.3.1 車輛總通過數最大化 42 2.3.2 路口總延滯最小化 44 2.3.3 人延滯最小化 46 第三章 現況分析 49 3.1 基礎構圖分析 52 3.2 速率變化圖分析 54 3.3 小結 60 第四章 地面道路號誌最佳化模式 61 4.1 Balance系統運作原理 61 4.1.1 交通流模型(Traffic Flow Model) 62 4.1.2 影響模型(Impact Model) 64 4.1.3 控制模型(Control Model) 66 4.2 號誌最佳化模式建構 69 第五章 模糊邏輯匝道儀控模式 72 5.1 模式設定 74 5.2 模式簡例驗證 79 第六章 號誌協控模式應用與案例分析 82 6.1 模擬平台建構 82 6.2 求解架構 85 6.3 匝道儀控模式績效評估 87 6.3.1 現況流量 87 6.3.2 1.5倍現況流量 89 6.4 號誌協控模式績效評估 92 第七章 結論與建議 95 7.1 結論 95 7.2 建議 96 參考文獻 98 附錄一 市區地面道路偵測器佈設位置 104 附錄二 國道1號偵測器佈設位置 106 附錄三 台74快速道路偵測器佈設位置 107 附錄四 匝道儀控時制計劃表 108 | |
dc.language.iso | zh-TW | |
dc.title | 匝道與地面道路號誌最佳化協控模式之研究 | zh_TW |
dc.title | Research of the Coordination of Ramp Metering and Surface Road Signal Control Optimization | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳健生,郭珮棻 | |
dc.subject.keyword | 模糊邏輯,匝道儀控,號誌最佳化,適應性控制,幹道號誌控制, | zh_TW |
dc.subject.keyword | Fuzzy Logic,Ramp Metering,Signal Optimization,Adaptive Control,Arterial Signal Control, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201802076 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 4.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。