請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71046完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
| dc.contributor.author | Jui Zhi Loh | en |
| dc.contributor.author | 駱瑞芝 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:50:14Z | - |
| dc.date.available | 2018-08-30 | |
| dc.date.copyright | 2018-08-30 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-31 | |
| dc.identifier.citation | 1. Thadhani, R., Pascual, M. & Bonventre, J.V. Acute renal failure. N Engl J Med 334, 1448-1460 (1996).
2. Malek, M. & Nematbakhsh, M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 4, 20-27 (2015). 3. Bellomo, R., Ronco, C., Kellum, J.A., et al. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8, R204-212 (2004). 4. van den Akker, E.K., Manintveld, O.C., Hesselink, D.A., et al. Protection against renal ischemia-reperfusion injury by ischemic postconditioning. Transplantation 95, 1299-1305 (2013). 5. Gobe, G., Willgoss, D., Hogg, N., et al. Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury. Kidney Int 56, 1299-1304 (1999). 6. Bonventre, J.V. & Zuk, A. Ischemic acute renal failure: an inflammatory disease? Kidney Int 66, 480-485 (2004). 7. Donohoe, J.F., Venkatachalam, M.A., Bernard, D.B., et al. Tubular leakage and obstruction after renal ischemia: structural-functional correlations. Kidney Int 13, 208-222 (1978). 8. Havasi, A. & Borkan, S.C. Apoptosis and acute kidney injury. Kidney Int 80, 29-40 (2011). 9. Yang, B., El Nahas, A.M., Thomas, G.L., et al. Caspase-3 and apoptosis in experimental chronic renal scarring. Kidney Int 60, 1765-1776 (2001). 10. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516 (2007). 11. Daemen, M.A., van 't Veer, C., Denecker, G., et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 104, 541-549 (1999). 12. Xu, Y., Guo, M., Jiang, W., et al. Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury. Ren Fail 38, 831-837 (2016). 13. Noh, M.R., Kim, J.I., Han, S.J., et al. C/EBP homologous protein (CHOP) gene deficiency attenuates renal ischemia/reperfusion injury in mice. Biochim Biophys Acta 1852, 1895-1901 (2015). 14. Dong, B., Zhou, H., Han, C., et al. Ischemia/reperfusion-induced CHOP expression promotes apoptosis and impairs renal function recovery: the role of acidosis and GPR4. PLoS One 9, e110944 (2014). 15. Chen, B.L., Sheu, M.L., Tsai, K.S., et al. CCAAT-Enhancer-Binding Protein Homologous Protein Deficiency Attenuates Oxidative Stress and Renal Ischemia-Reperfusion Injury. Antioxid Redox Signal 23, 1233-1245 (2015). 16. Granger, D.N. & Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 6, 524-551 (2015). 17. Lee, M.C., Velayutham, M., Komatsu, T., et al. Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry 53, 6615-6623 (2014). 18. Singh, I., Gulati, S., Orak, J.K., et al. Expression of antioxidant enzymes in rat kidney during ischemia-reperfusion injury. Mol Cell Biochem 125, 97-104 (1993). 19. Kim, J., Jang, H.S. & Park, K.M. Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am J Physiol Renal Physiol 298, F158-166 (2010). 20. Fleming, A. & Rubinsztein, D.C. Zebrafish as a model to understand autophagy and its role in neurological disease. Biochim Biophys Acta 1812, 520-526 (2011). 21. Pankiv, S., Clausen, T.H., Lamark, T., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145 (2007). 22. Jiang, M., Liu, K., Luo, J., et al. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176, 1181-1192 (2010). 23. Kimura, T., Takabatake, Y., Takahashi, A., et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22, 902-913 (2011). 24. Ishani, A., Xue, J.L., Himmelfarb, J., et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 20, 223-228 (2009). 25. Coca, S.G., Singanamala, S. & Parikh, C.R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81, 442-448 (2012). 26. Couser, W.G., Remuzzi, G., Mendis, S., et al. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80, 1258-1270 (2011). 27. Humphreys, B.D., Valerius, M.T., Kobayashi, A., et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284-291 (2008). 28. Bonventre, J.V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121, 4210-4221 (2011). 29. Forbes, J.M., Hewitson, T.D., Becker, G.J., et al. Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int 57, 2375-2385 (2000). 30. Susa, D., Mitchell, J.R., Verweij, M., et al. Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice. Aging Cell 8, 192-200 (2009). 31. Beckman, K.B. & Ames, B.N. The free radical theory of aging matures. Physiol Rev 78, 547-581 (1998). 32. Naesens, M. Replicative senescence in kidney aging, renal disease, and renal transplantation. Discov Med 11, 65-75 (2011). 33. Abdel-Rahman, E.M. & Okusa, M.D. Effects of aging on renal function and regenerative capacity. Nephron Clin Pract 127, 15-20 (2014). 34. Ferenbach, D.A. & Bonventre, J.V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11, 264-276 (2015). 35. Tentori, F., McCullough, K., Kilpatrick, R.D., et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85, 166-173 (2014). 36. Maravic, M., Ostertag, A., Torres, P.U., et al. Incidence and risk factors for hip fractures in dialysis patients. Osteoporos Int 25, 159-165 (2014). 37. Hansen, D., Olesen, J.B., Gislason, G.H., et al. Risk of fracture in adults on renal replacement therapy: a Danish national cohort study. Nephrol Dial Transplant 31, 1654-1662 (2016). 38. Thomas, R., Kanso, A. & Sedor, J.R. Chronic kidney disease and its complications. Prim Care 35, 329-344, vii (2008). 39. Isakova, T., Wahl, P., Vargas, G.S., et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79, 1370-1378 (2011). 40. Liu, S., Tang, W., Zhou, J., et al. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Am J Physiol Endocrinol Metab 293, E1636-1644 (2007). 41. Wang, H., Yoshiko, Y., Yamamoto, R., et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23, 939-948 (2008). 42. Gebauer, D., Mayr, E., Orthner, E., et al. Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol 31, 1391-1402 (2005). 43. Heckman, J.D., Ryaby, J.P., McCabe, J., et al. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 76, 26-34 (1994). 44. Duarte, L.R. The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 101, 153-159 (1983). 45. Chan, C.W., Qin, L., Lee, K.M., et al. Low intensity pulsed ultrasound accelerated bone remodeling during consolidation stage of distraction osteogenesis. J Orthop Res 24, 263-270 (2006). 46. Katiyar, A., Duncan, R.L. & Sarkar, K. Ultrasound stimulation increases proliferation of MC3T3-E1 preosteoblast-like cells. J Ther Ultrasound 2, 1 (2014). 47. Cook, S.D., Salkeld, S.L., Popich-Patron, L.S., et al. Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin Orthop Relat Res, S231-243 (2001). 48. Zhou, S., Schmelz, A., Seufferlein, T., et al. Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279, 54463-54469 (2004). 49. Ogata, T., Ito, K., Shindo, T., et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice. PLoS One 12, e0185555 (2017). 50. Hayes, B.T., Merrick, M.A., Sandrey, M.A., et al. Three-MHz Ultrasound Heats Deeper Into the Tissues Than Originally Theorized. J Athl Train 39, 230-234 (2004). 51. Xin, Z., Lin, G., Lei, H., et al. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology. Transl Androl Urol 5, 255-266 (2016). 52. Muratsubaki, S., Kuno, A., Tanno, M., et al. Suppressed autophagic response underlies augmentation of renal ischemia/reperfusion injury by type 2 diabetes. Sci Rep 7, 5311 (2017). 53. Xu, L., Zhang, L., Zhang, H., et al. The participation of fibroblast growth factor 23 (FGF23) in the progression of osteoporosis via JAK/STAT pathway. J Cell Biochem 119, 3819-3828 (2018). 54. Vanmassenhove, J., Vanholder, R. & Lameire, N. Points of Concern in Post Acute Kidney Injury Management. Nephron 138, 92-103 (2018). 55. Miller, D.L., Smith, N.B., Bailey, M.R., et al. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31, 623-634 (2012). 56. Claes, L. & Willie, B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93, 384-398 (2007). 57. Inagi, R., Nangaku, M., Onogi, H., et al. Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int 68, 2639-2650 (2005). 58. Wang, Y., Tian, J., Qiao, X., et al. Intermedin protects against renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. BMC Nephrol 16, 169 (2015). 59. Prachasilchai, W., Sonoda, H., Yokota-Ikeda, N., et al. A protective role of unfolded protein response in mouse ischemic acute kidney injury. Eur J Pharmacol 592, 138-145 (2008). 60. Marciniak, S.J., Yun, C.Y., Oyadomari, S., et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18, 3066-3077 (2004). 61. McCullough, K.D., Martindale, J.L., Klotz, L.O., et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21, 1249-1259 (2001). 62. Quoilin, C., Mouithys-Mickalad, A., Lecart, S., et al. Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury. Bba-Bioenergetics 1837, 1790-1800 (2014). 63. Paller, M.S., Hoidal, J.R. & Ferris, T.F. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74, 1156-1164 (1984). 64. Vaziri, N.D., Dicus, M., Ho, N.D., et al. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int 63, 179-185 (2003). 65. Sindhu, R.K., Ehdaie, A., Farmand, F., et al. Expression of catalase and glutathione peroxidase in renal insufficiency. Biochim Biophys Acta 1743, 86-92 (2005). 66. Kobayashi, M., Sugiyama, H., Wang, D.H., et al. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int 68, 1018-1031 (2005). 67. Bjorkoy, G., Lamark, T., Pankiv, S., et al. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452, 181-197 (2009). 68. Bjorkoy, G., Lamark, T., Brech, A., et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614 (2005). 69. Jiang, M., Wei, Q., Dong, G., et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82, 1271-1283 (2012). 70. Xie, Y., Xiao, J., Fu, C., et al. Ischemic Preconditioning Promotes Autophagy and Alleviates Renal Ischemia/Reperfusion Injury. Biomed Res Int 2018, 8353987 (2018). 71. Qian, Y. & Chen, X. Senescence regulation by the p53 protein family. Methods Mol Biol 965, 37-61 (2013). 72. Ying, Y., Kim, J., Westphal, S.N., et al. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol 25, 2707-2716 (2014). 73. Shapiro, G.I., Edwards, C.D., Ewen, M.E., et al. p16INK4A participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol 18, 378-387 (1998). 74. Yang, L., Besschetnova, T.Y., Brooks, C.R., et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16, 535-543, 531p following 143 (2010). 75. Hu, M.C., Shi, M., Zhang, J., et al. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int 78, 1240-1251 (2010). 76. Sugiura, H., Yoshida, T., Tsuchiya, K., et al. Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol Dial Transplant 20, 2636-2645 (2005). 77. Qian, Y., Guo, X., Che, L., et al. Klotho Reduces Necroptosis by Targeting Oxidative Stress Involved in Renal Ischemic-Reperfusion Injury. Cell Physiol Biochem 45, 2268-2282 (2018). 78. Hu, M.C., Shi, M., Zhang, J., et al. Renal Production, Uptake, and Handling of Circulating alphaKlotho. J Am Soc Nephrol 27, 79-90 (2016). 79. Hu, M.C., Kuro-o, M. & Moe, O.W. Renal and extrarenal actions of Klotho. Semin Nephrol 33, 118-129 (2013). 80. Li, W.F., Yang, K., Zhu, P., et al. Genistein Ameliorates Ischemia/Reperfusion-Induced Renal Injury in a SIRT1-Dependent Manner. Nutrients 9(2017). 81. Fan, H., Yang, H.C., You, L., et al. The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int 83, 404-413 (2013). 82. Li, J.H., Qu, X.L., Ricardo, S.D., et al. Resveratrol Inhibits Renal Fibrosis in the Obstructed Kidney Potential Role in Deacetylation of Smad3. American Journal of Pathology 177, 1065-1071 (2010). 83. Ponnusamy, M., Zhou, X., Yan, Y., et al. Blocking sirtuin 1 and 2 inhibits renal interstitial fibroblast activation and attenuates renal interstitial fibrosis in obstructive nephropathy. J Pharmacol Exp Ther 350, 243-256 (2014). 84. Larsson, T., Nisbeth, U., Ljunggren, O., et al. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64, 2272-2279 (2003). 85. Wahl, P. & Wolf, M. FGF23 in chronic kidney disease. Adv Exp Med Biol 728, 107-125 (2012). 86. Christensson, A., Ekberg, J., Grubb, A., et al. Serum cystatin C is a more sensitive and more accurate marker of glomerular filtration rate than enzymatic measurements of creatinine in renal transplantation. Nephron Physiol 94, p19-27 (2003). 87. Christensson, A.G., Grubb, A.O., Nilsson, J.A., et al. Serum cystatin C advantageous compared with serum creatinine in the detection of mild but not severe diabetic nephropathy. J Intern Med 256, 510-518 (2004). 88. Grubb, A.O. Cystatin C--properties and use as diagnostic marker. Adv Clin Chem 35, 63-99 (2000). 89. Song, S., Meyer, M., Turk, T.R., et al. Serum cystatin C in mouse models: a reliable and precise marker for renal function and superior to serum creatinine. Nephrol Dial Transplant 24, 1157-1161 (2009). 90. Le Clef, N., Verhulst, A., D'Haese, P.C., et al. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice. PLoS One 11, e0152153 (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71046 | - |
| dc.description.abstract | 急性腎損傷 (acute kidney injury, AKI)大多由缺血再灌流 (ischemia-reperfusion)造成, 通常發生在病人進行腎臟移植或者大型手術的時候, 還有患者敗血症併發AKI。AKI是臨床上常見問題, 特性為病人腎功能突然減少,通常在數小時至幾週內發生, AKI與病人死亡率提高有著密切的關係。大部分的AKI病人由於腎臟無法修復完整而發展成慢性腎疾病 (chronic kidney disease, CKD),以至於病人生命受到更大的威脅。低強度脈衝超音波 (Low intensity pulsed ultrasound, LIPUS) 是運用在臨床治療骨折的儀器。LIPUS 有著加速骨頭修復過程以及幫助其他軟組織如軟骨,心臟等修復的功效,但目前LIPUS運用在幫助腎損傷的修復尚未被驗證。因此,本篇研究主要想探討LIPUS對於腎損傷所帶來的保護功用。首先,我們摘除C57BL/6J公鼠單側腎臟,一周後再對僅存的腎臟進行缺血再灌流傷害(ischemia-reperfusion injury, IRI)。我們在摘除單側腎臟後的第二天開始每天給予小鼠LIPUS預防治療直到小鼠接受IRI誘導。IRI誘導後小鼠將每天接受LIPUS持續治療直到犧牲為止。IRI誘導 24小時後犧牲小鼠作為AKI模式而IRI 誘導30天後犧牲為CKD模式。小鼠的血液、腎臟及骨頭將被收集以進行後續分析。在偵測血清生化指標時,我們發現AKI模式小鼠血清中cystatin C以及CKD模式小鼠serum creatinine(SCr)在IRI後皆提升,但在LIPUS處理情況下這些數值明顯下降。此外,透過Periodic-Acid Schiff (PAS) 染色觀察腎臟病理組織切片時發現CKD模式中IRI+LIPUS組別小鼠腎損傷的情形比IRI組別輕微。接著,western blot結果顯示,LIPUS有效降低由IRI所誘導提升的CHOP以及cleaved-caspase 3的蛋白表現量,說明腎臟內質網壓力(endoplasmic-reticulum(ER) stress)及細胞凋亡減少的趨勢。LIPUS還顯著復原由IRI誘導下降的抗氧化酶如catalase的蛋白表現量。此外,在觀察老化相關marker(p53、p21及p16)時發現IRI會大量提升這些marker的蛋白表現量,然而LIPUS處理則逆轉這些現象。再來,透過Masson’s Trichrome染色評估腎纖維化程度以及觀察纖維化marker,α-SMA時得出LIPUS有效於降低腎纖維化的結論。最後,我們還發現CKD模式中小鼠在接受IRI後血清FGF23的濃度明顯上升,但在IRI+LIPUS組別中並未得到相同結果。綜合上述結果,我們研究指出LIPUS有治療腎損傷的效果,而這些效果是透過減少腎臟內質網壓力,細胞凋亡,復原antioxidant enzymes,以及延遲腎老化及腎纖維化。因此,LIPUS有潛力作為減輕腎損傷以及延緩CKD發展的預防治療方式。 | zh_TW |
| dc.description.abstract | Ischemia/reperfusion contributed to most cases of acute kidney injury (AKI), it commonly occurs during kidney transplantation, other major surgery or sepsis. AKI is a severe clinical issue, characterized by kidney damage with a rapid decline of renal function, and strongly associated with high mortality rates. Majority of AKI patients progress to chronic kidney disease (CKD) due to incomplete recovery of AKI further increase the mortality rates in patients. Low intensity pulsed ultrasound (LIPUS) has been recognized to accelerate bone fracture repair process and help in some soft tissues healing such as cartilage and cardiac tissues. However, the effect of LIPUS on renal injury treatment is yet to be investigated. Hence, we aimed to testify the therapeutic effect of LIPUS on renal injury. First, one week before ischemia/reperfusion injury (IRI), we performed unilateral nephrectomy on C57BL/6J male mice, followed by pre-treatment of LIPUS on day 2 after unilateral nephrectomy. IRI surgery was done one week after unilateral nephrectomy, LIPUS treatment was continued started from the day after IRI, once per day until the day of euthanization. Mice sacrificed 24 hours after IRI was considered as AKI model and 30 days after IRI as CKD model. Serum, kidney and bone were harvested for further analysis. By detecting serum biochemical parameter, we observed markedly increase in cystatin C in AKI model and serum creatinine in CKD model after IRI, however, the increase was reduced with LIPUS treatment. Pathological changes of renal tissues was observed using Periodic-Acid Schiff (PAS) stain, results showed less renal injury in IRI+LIPUS group compared to IRI group in CKD model. Besides, with western blot results, we noticed the effect of LIPUS on reducing IRI-induced CHOP and cleaved-caspase 3 expression, implicating decrease in endoplasmic-reticulum(ER) stress, apoptosis and restoring antioxidant enzymes levels such as catalase in AKI and CKD model. Furthermore, the aging markers (p53, p21 and p16) were induced after IRI in CKD model, in contrast LIPUS treatment reversed the situation. We also noted delayed renal fibrosis after IRI with LIPUS treatment by evaluating the fibrosis area on Masson’s Trichrome stained tissue sections and protein expression level of fibrotic marker, α-SMA. Finally, results showed increase of serum FGF23 after IRI declined after LIPUS treatment in CKD model. In short, LIPUS treatment has been demonstrated in our study to exert protective effect on renal injury by attenuating ER stress, apoptosis, restoring antioxidant enzymes, delaying renal aging and renal fibrosis. Therefore, LIPUS could serve as early intervention to reduce renal injury and delay CKD progression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:50:14Z (GMT). No. of bitstreams: 1 ntu-107-R05447012-1.pdf: 2415907 bytes, checksum: 9fc10f9931586e79dec35f9538891aea (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III Abstract V Abbreviation Summary VII Part I: Introduction 1 1.1 Ischemia/Reperfusion Injury (IRI)-induced Renal Injury 1 1.2 Cellular Pathophysiology of Ischemic AKI 2 1.2.1 Apoptosis 2 1.2.2 Endoplasmic Reticulum (ER) Stress 4 1.2.3 Antioxidant Enzymes 5 1.2.4 Autophagy 6 1.3 Progression of AKI to CKD 7 1.3.1 Fibrosis 7 1.3.2 Aging 8 1.4 CKD–associated Mineral and Bone Disorder (CKD–MBD) 9 1.5 Low Intensity Pulsed Ultrasound (LIPUS) as a Therapeutic Device 10 Part II: Aim 12 Part III: Materials and Methods 13 3.1 Animals 13 3.2 Design and procedures of animal experiments 13 3.3 LIPUS therapy 14 3.4 Serum biochemical parameters measurement 14 3.5 Pathological observation of the kidney 14 3.6 Histological examination of bone tissues 15 3.7 Caspase 3 activity in renal tissues 15 3.8 Western blotting 15 3.9 Statistics 16 Part IV: Results 19 4.1 LIPUS reduced IRI-induced tubular injury in CKD model 19 4.2 LIPUS diminished renal ER stress and apoptosis after IRI 19 4.3 IRI-induced decrease levels of antioxidant enzymes was rescued after LIPUS treatment 20 4.4 The beneficial effect of LIPUS on autophagy after IRI was not significant 20 4.5 LIPUS may attenuate renal aging and delay renal fibrosis 21 4.6 LIPUS reduced serum FGF23 in CKD model 22 Part V: Discussion 23 Part VI: Conclusion 28 Part VII: References 29 Part VIII: Figures and Figure Legends 40 Figure 1. The effect of LIPUS on serum biochemical parameters in mice with AKI or CKD. 40 41 Figure 2. The effect of LIPUS on IRI-induced renal tubular injury in AKI model. 41 Figure 3. The effect of LIPUS on CKD-related renal tubular injury. 42 Figure 4. The effect of LIPUS on renal ER stress and apoptosis-related signals in an AKI model. 43 44 Figure 5. The effect of LIPUS on renal ER stress and apoptosis-related signals in a CKD model. 44 Figure 6. Elevation of renal antioxidant enzymes levels after LIPUS treatment in both AKI model. 46 47 Figure 7. Elevation of renal antioxidant enzymes levels after LIPUS treatment in CKD model. 47 Figure 8. The effect of LIPUS on renal autophagy-related signals in both AKI and CKD models. 48 Figure 9. The effect of LIPUS on renal senescence-related signals in a CKD model. 50 Figure 10. LIPUS reduces renal fibrosis in a CKD model. 51 Figure 11. The effects of LIPUS on serum FGF23 levels and bone microstructure in a CKD model. 53 | |
| dc.language.iso | en | |
| dc.subject | 抗氧化? | zh_TW |
| dc.subject | 急性腎損傷 | zh_TW |
| dc.subject | 慢性腎疾病 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 腎纖維化 | zh_TW |
| dc.subject | 低強度脈衝超音波 | zh_TW |
| dc.subject | 缺血再灌流 | zh_TW |
| dc.subject | 內質網壓力 | zh_TW |
| dc.subject | renal fibrosis | en |
| dc.subject | aging | en |
| dc.subject | antioxidant enzymes | en |
| dc.subject | endoplasmic-reticulum stress | en |
| dc.subject | low intensity pulsed ultrasound | en |
| dc.subject | chronic kidney disease | en |
| dc.subject | acute kidney injury | en |
| dc.subject | Ischemia/reperfusion | en |
| dc.title | 低強度脈衝超音波對於腎臟缺血再灌流所致傷害的保護效果 | zh_TW |
| dc.title | The Protective Effect of Low Intensity Pulsed Ultrasound on Renal Ischemia/Reperfusion Injury | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 姜至剛(Chih-Kang Chiang),楊榮森(Rong-Sen Yang),許美鈴(Meei-Ling Sheu),蕭水銀(Shoei-Yn Lin-Shiau) | |
| dc.subject.keyword | 缺血再灌流,急性腎損傷,慢性腎疾病,低強度脈衝超音波,內質網壓力,抗氧化?,老化,腎纖維化, | zh_TW |
| dc.subject.keyword | Ischemia/reperfusion,acute kidney injury,chronic kidney disease,low intensity pulsed ultrasound,endoplasmic-reticulum stress,antioxidant enzymes,aging,renal fibrosis, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU201802244 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
