Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71045
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林君榮
dc.contributor.authorYang Zhaoen
dc.contributor.author趙陽zh_TW
dc.date.accessioned2021-06-17T04:50:11Z-
dc.date.available2019-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citation1. Wagner JG. History of pharmacokinetics. Pharmacol Ther. 1981, 12, 537-562
2. Lau YY, Okochi, Huang H, Benet Y. Pharmacokinetics of atorvastatin and its hydroxy metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effect from hepatic uptake transporters, and intestinal and hepatic metabolism. Drug Metab Dispos. 2006, 34, 1175-1181
3. Godoy P, Hewitt N, Albrecht J, Andersen U, Ansari ME, Bhattacharya N. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013, 87, 1315-1330
4. Masica AL, Azie NE, Brater DC, Hall SD, Jones DR. Intravenous diltiazem and CYP3A-mediated metabolism. Br J Clin Pharmacol. 2000, 50, 273-276
5. Malik MY, Jaiswal S, Sharma A, Shukla M, Lal J. Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metab Rev. 2016, 48, 281-327
6. Huang SM, Temple R. Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin Pharmacol Ther. 2008, 84, 287-294
7. Chopra A, Abdel-Nasser A. Epidemiology of rheumatic musculoskeletal disorders in the developing world. Best Pract Res Clin Rheumatol. 2008, 22, 583-604
8. Yu KH, See LC, Kuo CF, Chou IJ, Chou MJ. Prevalence and incidence in patients with autoimmune rheumatic diseases: a nationwide population-based study in Taiwan. Arthritis Care Res. 2013, 65, 244-50
9. Maradit-Kremers H, Nicola PJ, Crowson CS, Ballman KV, Gabriel SE, Cardiovascular death in rheumatoid arthritis: a population-based study. Arthritis Rheum. 2005, 52, 722-732
10. Zangerle PF, De GD, Lopez M, Meuleman RJ, Vrindts Y, Fauchet F. Direct stimulation of cytokines (IL-1β, TNF-α, IL-6, IL-2, IFN-γ and GM-CSF) in whole blood: II. Application to rheumatoid arthritis and osteoarthritis. Cytokine 1992, 4, 568-575
11. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996, 14, 397-440
12. Bishop H, Schneider RE, Welling PG. Plasma propranolol concentrations in rats with adjuvant-induced arthritis. Biopharm. Drug Dispos. 1981, 2, 291-297
13. Verbeeck RK. Pathophysiologic factors affecting the pharmacokinetics of nonsteroidal antiinflammatory drugs. J Rheumatol Suppl. 1988, 17, 44-57
14. Ling S, Jamali F. Effect of early phase adjuvant arthritis on hepatic P450 enzymes and pharmacokinetics of verapamil: an alternative approach to the use of an animal model of inflammation for pharmacokinetic studies. Drug Metab Dispos. 2005, 33, 579-586
15. van Roon EN, Jansen TL, Houtman NM, Spoelstra P, Brouwers JR. Leflunomide for the treatment of rheumatoid arthritis in clinical practice: incidence and severity of hepatotoxicity. Drug Saf. 2004, 27, 345-352
16. Alcorn N, Saunders S, Madhok R. Benefit-risk assessment of leflunomide: an appraisal of leflunomide in rheumatoid arthritis 10 years after licensing.Drug Saf. 2009, 32, 1123-1134
17. FDA Drug Safety Communication: New boxed warning for severe liver injury with arthritisdrugArava(leflunomide) .2010 .http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm218679.htm
18. Arava® (leflunomide): prescribing information 2012. Sanofi-aventis U.S. LLC, 2012.
19. Kalgutkar AS, Nguyen HT, Vaz AD, Doan A, Dalvie DK, McLeod DG, Murray JC. In vitro metabolism studies on the isoxazole ring scission in the anti-inflammatory agent lefluonomide to its active alpha-cyanoenol metabolite A771726: mechanistic similarities with the cytochrome P450-catalyzed dehydration of aldoximes. Drug Metab Dispos. 2003, 31, 1240-1250
20. Shi Q, Yang X, Greenhaw J, Salminen WF. Hepatic cytochrome P450s attenuate the cytotoxicity induced by leflunomide and its active metabolite A77 1726 in primary cultured rat hepatocytes. Toxicol Sci. 2011, 122, 579-586
21. Gossye V, Elewaut D, Bougarne N, et al. Differential mechanism of NF-kappaB inhibition by two glucocorticoid receptor modulators in rheumatoid arthritis synovial fibroblasts J Arthritis Rheum, 2009, 60, 3241-3250
22. Breedveld F, Emery P, Keystone E, et al. Infliximab in active early rheumatoid arthritis J Ann Rheum Dis, 2004, 63, 149-155
23. Van De Putte LBA, Atkins C, Malaise M, et al. Eficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed J Ann Rheum Dis, 2004, 63, 508-516
24. Wagner S, Bindler J, Andriambeloson E. Animal Models of Collagen-Induced Arthritis. Current Protocols in Pharmacology, John Wiley & Sons, Inc. 2008, Chapter 5: Unit 5, page 51
25. Stefan S, Alexander T, Jamie R, Iain M. Cytokines as Therapeutic Targets in Rheumatoid Arthritis and Other Inflammatory Diseases. Pharmacol Rev 2015; 67, 280–309
26. Gerd RB, Eugen F, Thomas D. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014, 10,77-88
27. Kohsuke Y, Teppei H, Yoshitada S, et. al. Involvement of the Circadian Rhythm and Inflammatory Cytokines in the Pathogenesis of Rheumatoid Arthritis. J Immunol Res. 2014, 1-6
28. Schmidt A, Schwind B, Gillich M, Brune K, Hinz B. Simultaneous determination of leflunomide and its active metabolite, A77 1726, in human plasma by high-performance liquid chromatography. Biomed Chromatogr. 2003, 17, 276-281
29. Hong WY, Jun L, Ji QC, Shu YX. Inhibitory effect of leflunomide on hepatic fibrosis induced by CCl4 in rats. Acta Pharmacol Sin. 2004, 25 , 915-920
30. Yan S, Xi C, Jia BZ, Xiao MZ, Gang L, Xiao LL, Bin S, Shi BS. Combined use of rapamycin and leflunomide in prevention of acute cardiac allografts rejection in rats. Transpl Immunol. 2012, 27, 19-24
31. Shymaa EB, Soha SE, Mohamed FM, Eman AI, Ali SA. Myelosuppressive and hepatotoxic potential of leflunomide and methotrexate combination in a rat model of rheumatoid arthritis. Pharmacol Rep. 2015, 67, 102-114
32. Luftschein S, Bienenstock H, Varady JC, Stitt FW. Increasing dose of naproxen in rheumatoid arthritis: use with and without corticosteroids. J Rheumatol. 1979 6,397-404
33. Baber N, Sibeon R, Laws E, Halliday L, Orme M, Littler T. Indomethacin in rheumatoid arthritis: comparison of oral and rectal dosing. Br J Clin Pharmacol. 1980, 10, 387-392
34. Robert G, Godfrey S, Dela C. Effect of ibuprofen dosage on patient response in rheumatoid arthritis. Arthritis Rheum. 1975, 1, 135-137
35. Nair AB, Jacob S, et al. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016, 7, 27-31
36. Yilmaz B, Asci A, Erdem AF. HPLC method for naproxen determination in human plasma and its application to a pharmacokinetic study in Turkey. J Chromatogr Sci. 2014, 52, 584-9
37. Havlíková L, Solich P, et al. Development and validation of HPLC method for determination of indomethacin and its two degradation products in topical gel. J Pharm Biomed Anal. 2005, 37, 899-905
38. Sylvester OE, Mathew IA, Rosemary NC, Magnus AI. A comparative UV−HPLC analysis of ten brands of ibuprofen tablets. Asian Pac J Trop Biomed. 2015, 5, 880-884
39. Pan Z, Gui HG, Lian JZ, Qian C, Nan L, Li C, et al. Drug-protein binding mechanism of juglone for early PK profiling: Insights from ultrafiltration, multi-spectroscopic and molecular docking methods. J Pharm Biomed Anal. 2017, 141, 262-269
40. Yuji S, Hideyuki M, Ken O, Tomohiro T, et. al. Pharmacokinetic Significance of Renal OAT3 (SLC22A8) for Anionic Drug Elimination in Patients with Mesangial Proliferative Glomerulonephritis. J Pharm Res.2005, 22, 2016-2022
41. Maria MP, James AB, Karen BS, Rommel GT, Richard BK,William JH, Pak SD. Kathleen MH. Prediction of Renal Transporter Mediated Drug-Drug Interactions for Pemetrexed Using Physiologically Based Pharmacokinetic Modeling. Drug Metab Dispos. 2015, 43,325-334
42. Feng Y, Wang CY, Liu Q, Meng Q, Huo XK, Liu ZH, Sun PY. Bezafibrate-mizoribine interaction: Involvement of organic anion transporters OAT1 and OAT3 in rats. Eur J Pharm Sci. 2016, 81,119-128
43. Sun T, Yu E, Yu L, Luo J, Li H, Fu Z. LipoxinA4 induced antinociception and decreased expression of NF-kB and pro-inflammatory cytokines after chronic dorsal root ganglia compression in rats. Eur J Pain. 2012, 16, 18-207
44. 陳佳壕. 轉運蛋白與CYP450酵素在藥物交互作用上所扮演角色之探討. 博士 論文. 2014
45. Wagner S, Bindler J, Andriambeloson E. Animal models of collagen-induced arthritis. Curr Protoc Pharmacol. 2008, 43,UNIT5.51.1-5.51.8
46. Moore AR, et al. Collagen-induced arthritis. Methods Mol Biol. 2003, 225, 175-179
47. Patel A, Zhang S, Paramahamsa M, Jiang W, Wang L, Moorthy B, Shivanna B. Leflunomide Induces Pulmonary and Hepatic CYP1A Enzymes via Aryl Hydrocarbon Receptor. Drug Metab Dispos. 2015; 43, 1966-1970
48. Laub M, Fraser R, Kurche J, Lara A, Kiser TH, Reynolds PM. Use of a Cholestyramine Washout in a Patient With Septic Shock on Leflunomide Therapy: A Case Report and Review of the Literature. J Intensive Care Med. 2016, 31,412-414
49. Wilkinson GR, et al. Clearance approaches in pharmacology. Pharmacol Rev. 1987, 39, 1-47
50. Ikuta H, Kawase A, Iwaki M. Stereoselective Pharmacokinetics and Chiral Inversion of Ibuprofen in Adjuvant-induced Arthritic Rats. Drug Metab Dispos. 2017, 45, 316-324
51. Belpaire FM, Bogaert MG, et al. Binding of diltiazem to albumin, alpha 1-acid glycoprotein and to serum in man. J Clin Pharmacol. 1990, 30, 311-317
52. Aishwarya B, Sathiyanarayanan L, Arulmozhi S, Kakasaheb M. Herb-drug interaction of Andrographis paniculata (Nees) extract and andrographolide on pharmacokinetic and pharmacodynamic of naproxen in rats. J Ethnopharmacol. 2017, 195, 214-221
53. Duggan DE, Hogans AF, Kwan KC, McMahon FG. The metabolism of indomethacin in man. J Pharmacol Exp Ther. 1972, 181, 563-575
54. Neal MD. Clinical Pharmacokinetics of Ibuprofen The First 30 Years. Clin Pharmacokinet. 1998, 34, 101-154
55. Li XN, Debra CD, Richard RA, William JJ. Effect of Disease-Related Changes in Plasma Albumin on the Pharmacokinetics of Naproxen in Male and Female Arthritic Rats. Drug Metab Dispos 2017, 45, 476-483
56. Miki N, Tsuyoshi I, Noriaki S, Shogo T, Toshinori Y, Yukio K. Cytochrome P450 2C9 Catalyzes Indomethacin O-Demethylation in Human Liver Microsomes. Drug Metab Dispos. 1998, 26, 261-266
57. Qiang SX, Yang J, Greenhaw W, Salminen F. Hepatic Cytochrome P450s Attenuate the Cytotoxicity Induced by Leflunomide and Its Active Metabolite A771726 in Primary Cultured Rat Hepatocytes. Toxicol Sci. 2011, 122, 579-586.
58. John O, Miners S, Coulter RH, Tukey M,Veronese E, Donald JB. Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol. 1996, 51, 1003-1008
59. John OM, Donald JB. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998, 45, 525-538
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71045-
dc.description.abstract類風濕性關節炎是以關節滑膜慢性發炎為主要病理特徵征的一種自身免疫疾病,該疾病可以引起關節的腫痛以及周邊軟骨的破壞,最終引起關節畸形并出現不同程度殘疾。隨著對於類風濕性關節炎病理機制的了解,已有許多藥物可用於治療這項疾病。根據作用方式,目前治療藥物大致可以分為幾類:非類固醇抗發炎藥物,糖皮質激素類,疾病修飾抗風濕藥物(慢作用抗風濕藥物),細胞因子抑制劑與T細胞作用生物製劑。其中,非類固醇抗發炎藥物和改變病情藥物是目前最常用於類風溼性關節炎症的藥物。
本論文旨在研究評估非類固醇抗發炎藥物naproxen、ibuprofen、indomethacin和改變病情藥物leflunomide在膠原蛋白誘發關節炎疾病的大鼠之藥動學特性。研究結果顯示類風濕性關節炎大鼠相較健康大鼠血中cytokine濃度interleukin-1β, interleukin-6, TNF-α都有增加的趨勢,並且TNF-α增加到2.8倍。並且ATS和ATL兩個衡量肝臟毒性的指標在day17給藥24小時後,均上升了1.6倍。 連續6天投予leflunomide後,在Day23觀察到大鼠肝臟病理形態發生明顯改變。在藥動學性質部分,實驗結果顯示,相較於健康鼠試驗藥物 (naproxen、ibuprofen、indomethacin和leflunomide)在關節炎模型大鼠之血中濃度皆有明顯改變。其中,leflunomide四小時內的AUC變成2.1倍,Cmax變為2.05倍,Cl清除率下降到原來37.5%。除此之外,Indomethacin, naproxen及ibuprofen的24小時AUC均有上升的趨勢,其中ibuprofen的AUC上升到1.17倍,indomethacin的清除率下降到原來一半。
以上結果顯示關節炎可顯著影響naproxen、ibuprofen、indomethacin和leflunomide之藥動學性質。其所造成這些藥物藥動學性質的改變或許與CIA大鼠全身發炎所導致代謝活性改變有關。
zh_TW
dc.description.abstractRheumatoid arthritis (RA) is an auto-immune disease with synovitis, joint pain and deformity in pathological features that seriously affects the patient's daily life. In the past few decades, along with the elucidation of pathogenesis, a number of anti-rheumatoid arthritis drugs have been developed and available on the market. According to the action of mechanisms, these drugs can be classified to several categories: the nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease modifying anti-rheumatic drugs (DMARDs), and biological agents that specifically inhibit interleukin-1β, interleukin-6, and TNF-α or directly target on T lymphocytes. Among these, the NSAIDs and DMARDs are widely used in the treatment of RA.
The objective of this thesis is to investigate the effects of RA on the pharmacokinetics of NSAIDs (naproxen、ibuprofen、indomethacin) and DMARDs (leflunomide) in animals with and without collagen-induced arthritis (CIA). The results show that the plasma levels of interleukin-1β, interleukin-6 and TNF-α are likely to increase in CIA rats, example that the concentraction of TNF-α increase by 2.8-fold compare to controls. The ALT (Alanine Aminotransferase), AST (Aspartate Aminotransferase) value referring for the liver toxicity increased by 1.6-fold at 24 hours after the dosing of leflunomide on day-17. Following 6-day consecutive administrations of leflunomide, the liver morphology was also changed on day-23. In terms of pharmacokinetic properties, following oral administratins, the plasma concentration profiles of naproxen, ibuprofen, indomethacin, and leflunomide were all changed in CIA rats, compared to the controls. The AUC and Cmax values of leflunomide increased by 2.1-fold and 2.05-fold, respectively, whereas clearance decreased by 2.67-fold first 4 hours after dosing. While the AUC of ibuprofen increased by 1.17-fold, and also a growing trend comes to indomethacin, naproxen.
Taken together, these data demonstrate that RA has significant impacts on the pharmacokinetics of naproxen, ibuprofen, indomethacin, and leflunomide. The changes in pharmacokientics of these drugs may be attributed to different metabolic activities caused by systemic inflammatory responses in CIA rats.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:50:11Z (GMT). No. of bitstreams: 1
ntu-107-R04423027-1.pdf: 2000137 bytes, checksum: 17a07cb91f1f4fe5fd8da6b130b20d4e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAbstract i
中文摘要 iii
目錄 iv
圖目錄 vi
表目錄 vii
Chapter 1 文獻回顧 1
1.1 藥物動力學 1
1.2 疾病與藥物交互作用 2
1.2.1 類風濕性關節炎 2
1.2.2 類風濕性關節炎的藥物治療 3
Chapter 2 研究目的 9
Chapter 3 實驗材料 10
3.1 膠原蛋白誘發關節炎大鼠動物模型的建立 10
3.2 大鼠血漿中的IL-1β、IL-6與TNF-α濃度的測定 11
3.3 Leflunomide在大鼠上的藥物動力學試驗與血中濃度測定 11
3.4 Leflunomide的肝臟毒性測定 13
3.5 Naproxen、Ibuprofen、Indomethacin在大鼠上的藥物動力學試驗與血中濃度測定及大鼠血漿蛋白結合率的測定 15
Chapter 4 實驗方法 18
4.1 膠原蛋白誘發關節炎大鼠動物模型的建立 18
4.2 大鼠血漿中的IL-1β、IL-6與TNF-α濃度的測定 18
4.3 Leflunomide在大鼠上的藥物動力學試驗與血中濃度測定 19
4.4 Leflunomide的毒性測定 21
4.4.1 AST和ALT氨基酸轉氨酶含量測定 21
4.4.2 大鼠肝臟切片病理毒理染色 21
4.5 Naproxen、Ibuprofen、Indomethacin在大鼠上的藥物動力學試驗與血中濃度測定 22
4.6 Naproxen、Ibuprofen、Indomethacin大鼠血漿蛋白結合率的測定 23
4.7 數據分析 24
Chapter 5 實驗結果 26
5.1 評估膠原蛋白誘發之關節炎大鼠動物模式 26
5.2 Leflunomide在CIA與control大鼠的藥物動力學與毒性實驗 26
5.3 Nsaid藥物在CIA與control大鼠的藥物動力學實驗 27
5.4 CIA與control大鼠體外NSAIDs藥物血漿蛋白結合率的測定 27
Chapter 6 結果討論 34
Chapter 7 結論 37
Chapter 8 參考文獻 38
dc.language.isozh-TW
dc.subject藥物動力學zh_TW
dc.subject類風溼性關節炎zh_TW
dc.subject膠原蛋白誘發之關節炎大鼠zh_TW
dc.subject非類固醇抗發炎藥物zh_TW
dc.subject改變病情藥物zh_TW
dc.subjectpharmacokineticsen
dc.subjectrheumatoid arthritisen
dc.subjectcollagen-induced arthritis raten
dc.subjectNSAIDen
dc.subjectDMARDen
dc.titleNaproxen、Ibuprofen、Indomethacin及Leflunomide
在膠原蛋白誘發關節炎大鼠上的藥物動力學性質探討
zh_TW
dc.titleThe pharmacokinetics of naproxen, ibuprofen, indomethacin, and leflunomide in collagen-induced arthritis rats modelen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳佳壕,孔繁璐
dc.subject.keyword藥物動力學,類風溼性關節炎,膠原蛋白誘發之關節炎大鼠,非類固醇抗發炎藥物,改變病情藥物,zh_TW
dc.subject.keywordpharmacokinetics,rheumatoid arthritis,collagen-induced arthritis rat,NSAID,DMARD,en
dc.relation.page44
dc.identifier.doi10.6342/NTU201802095
dc.rights.note有償授權
dc.date.accepted2018-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved