Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林菀俞(Wan-Yu Lin)
dc.contributor.authorChing-Chieh Huangen
dc.contributor.author黃慶杰zh_TW
dc.date.accessioned2021-06-17T04:48:50Z-
dc.date.available2018-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citationAlderman M, Arakawa K, Beilin L, Chalmers J, Erdine S, Fujishima R, Hamet P, Hansson L, Landsberg L, Leenen F. 1999. 1999 World Health Organization-International Society of Hypertension guidelines for the management of hypertension. Blood Pressure 8:9-43.
Aubier M, Viires N. 1998. Calcium ATPase and respiratory muscle function. European Respiratory Journal 11(3):758-766.
Baik I, Shin C. 2008. Prospective study of alcohol consumption and metabolic syndrome–. The American journal of clinical nutrition 87(5):1455-1463.
Balhara YPS. 2012. Tobacco and metabolic syndrome. Indian journal of endocrinology and metabolism 16(1):81.
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological):289-300.
Berster JM, Göke B. 2008. Type 2 diabetes mellitus as risk factor for colorectal cancer. Archives of physiology and biochemistry 114(1):84-98.
Carey CE, Agrawal A, Bucholz KK, Hartz SM, Lynskey MT, Nelson EC, Bierut LJ, Bogdan R. 2016. Associations between Polygenic Risk for Psychiatric Disorders and Substance Involvement. Front Genet 7:149.
Che R, Motsinger-Reif AA. 2013. Evaluation of genetic risk score models in the presence of interaction and linkage disequilibrium. Front Genet 4:138.
Chen H, Meigs JB, Dupuis J. 2014. Incorporating gene-environment interaction in testing for association with rare genetic variants. Hum Hered 78(2):81-90.
Cheng Q, Li Y-K, Lu F, Yin L, Wang Y-Z, Wei W, Lin Q. 2017. Interactions between ACYP2 genetic polymorphisms and environment factors with susceptibility to ischemic stroke in a Han Chinese Population. Oncotarget 8(58):97913.
Chong I-G, Jun C-H. 2005. Performance of some variable selection methods when multicollinearity is present. Chemometrics and intelligent laboratory systems 78(1-2):103-112.
Consortium WTCC. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661.
Dai JY, Kooperberg C, Leblanc M, Prentice RL. 2012. Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction. Biometrika 99(4):929-944.
Dick DM, Kendler KS. 2012. The impact of gene–environment interaction on alcohol use disorders. Alcohol research: current reviews 34(3):318.
Dokas J, Chadt A, Joost H, Al-Hasani H. 2016. Tbc1d1 deletion suppresses obesity in leptin-deficient mice. International Journal of Obesity 40(8).
Dudbridge F. 2013. Power and predictive accuracy of polygenic risk scores. PLoS genetics 9(3):e1003348.
Frost HR, Andrew AS, Karagas MR, Moore JH. A screening-testing approach for detecting gene-environment interactions using sequential penalized and unpenalized multiple logistic regression; 2014. World Scientific. p 183-194.
Frost HR, Shen L, Saykin AJ, Williams SM, Moore JH, Alzheimer's Disease Neuroimaging I. 2016. Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control. Genet Epidemiol 40(7):544-557.
Gandhi VC, Ross DH. 1987. Effects of alcohol on alpha-adrenergic receptor regulation of calcium ATPase in liver plasma membranes. Alcohol 4(1):25-30.
Guenifi A, Portela-Gomes GM, Grimelius L, Efendić S, Abdel-Halim SM. 2000. Adenylyl cyclase isoform expression in non-diabetic and diabetic Goto-Kakizaki (GK) rat pancreas. Evidence for distinct overexpression of type-8 adenylyl cyclase in diabetic GK rat islets. Histochemistry and cell biology 113(2):81-89.
Hüls A, Ickstadt K, Schikowski T, Krämer U. 2017. Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression. BMC genetics 18(1):55.
Hepp KD. 1972. Adenylate cyclase and insulin action. The FEBS Journal 31(2):266-276.
Hong EP, Park JW, Suh J-G, Kim D-H. 2014. Effect of interactions between genetic polymorphisms and cigarette smoking on plasma triglyceride levels in elderly Koreans: the Hallym Aging Study. Genes & Genomics 37(2):173-181.
Hope BT, Nagarkar D, Leonard S, Wise RA. 2007. Long-term upregulation of protein kinase A and adenylate cyclase levels in human smokers. Journal of Neuroscience 27(8):1964-1972.
Hsu L, Jiao S, Dai JY, Hutter C, Peters U, Kooperberg C. 2012. Powerful cocktail methods for detecting genome-wide gene-environment interaction. Genet Epidemiol 36(3):183-94.
Huls A, Kramer U, Carlsten C, Schikowski T, Ickstadt K, Schwender H. 2017. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies. BMC Genet 18(1):115.
Jacobs DR, Jr., Yatsuya H, Hearst MO, Thyagarajan B, Kalhan R, Rosenberg S, Smith LJ, Barr RG, Duprez DA. 2012. Rate of decline of forced vital capacity predicts future arterial hypertension: the Coronary Artery Risk Development in Young Adults Study. Hypertension 59(2):219-25.
Jiao S, Hsu L, Bezieau S, Brenner H, Chan AT, Chang-Claude J, Le Marchand L, Lemire M, Newcomb PA, Slattery ML and others. 2013. SBERIA: set-based gene-environment interaction test for rare and common variants in complex diseases. Genet Epidemiol 37(5):452-64.
Justice AE, Winkler TW, Feitosa MF, Graff M, Fisher VA, Young K, Barata L, Deng X, Czajkowski J, Hadley D. 2017. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nature communications 8:14977.
Klimentidis YC, Chougule A, Arora A, Frazier-Wood AC, Hsu CH. 2015. Triglyceride-Increasing Alleles Associated with Protection against Type-2 Diabetes. PLoS Genet 11(5):e1005204.
Kooperberg C, LeBlanc M. 2008. Increasing the power of identifying gene× gene interactions in genome‐wide association studies. Genetic epidemiology 32(3):255-263.
Kuo IC, Lin HY, Niu SW, Hwang DY, Lee JJ, Tsai JC, Hung CC, Hwang SJ, Chen HC. 2016. Glycated Hemoglobin and Outcomes in Patients with Advanced Diabetic Chronic Kidney Disease. Sci Rep 6:20028.
Lee C-J. 2016. 利用台灣生物資料庫探討成人肺功能下降之全基因體關聯研究. 臺灣大學流行病學與預防醫學研究所學位論文:1-80.
Li J, Fu R, Yang Y, Horz H-P, Guan Y, Lu Y, Lou H, Tian L, Zheng S, Liu H. 2017. A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two Muslim groups. Systematic and applied microbiology.
Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. 2016a. Association and interaction of APOA5, BUD13, CETP, LIPA and health-related behavior with metabolic syndrome in a Taiwanese population. Sci Rep 6:36830.
Lin W-Y, Huang C-C, Liu Y-L, Tsai S-J, Kuo P-H. 2018a. Genome-wide gene-environment interaction analysis using set-based association tests (Submitted).
Lin W-Y, Huang C-C, Liu Y-L, Tsai S-J, Kuo P-H. 2018b. Polygenic approaches to detect gene-environment interactions when external information is unavailable (Under revision for Briefings in Bioinformatics).
Lin W-Y, Lee W-C. 2012. Improving power of genome-wide association studies with weighted false discovery rate control and prioritized subset analysis. PLoS One 7(4):e33716.
Lin WY, Lee WC. 2010. Incorporating prior knowledge to facilitate discoveries in a genome-wide association study on age-related macular degeneration. BMC Res Notes 3:26.
Lin X, Lee S, Christiani DC, Lin X. 2013. Test for interactions between a genetic marker set and environment in generalized linear models. Biostatistics 14(4):667-81.
Lin X, Lee S, Wu MC, Wang C, Chen H, Li Z, Lin X. 2016b. Test for rare variants by environment interactions in sequencing association studies. Biometrics 72(1):156-64.
Liu Q, Chen LS, Nicolae DL, Pierce BL. 2016. A unified set-based test with adaptive filtering for gene-environment interaction analyses. Biometrics 72(2):629-38.
Luikart G, Cornuet JM. 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation biology 12(1):228-237.
Martinez EC, Lilyanna S, Wang P, Vardy LA, Jiang X, Armugam A, Jeyaseelan K, Richards AM. 2017. MicroRNA-31 promotes adverse cardiac remodeling and dysfunction in ischemic heart disease. Journal of molecular and cellular cardiology 112:27-39.
Montasser ME, Shimmin LC, Hanis CL, Boerwinkle E, Hixson JE. 2009. Gene by smoking interaction in hypertension: identification of a major QTL on chromosome 15q for systolic blood pressure in Mexican Americans. Journal of hypertension 27(3):491.
Mukherjee B, Ahn J, Gruber SB, Chatterjee N. 2012. Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons. Am J Epidemiol 175(3):177-90.
Mullins N, Power RA, Fisher HL, Hanscombe KB, Euesden J, Iniesta R, Levinson DF, Weissman MM, Potash JB, Shi J and others. 2016. Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychol Med 46(4):759-70.
Murcray CE, Lewinger JP, Gauderman WJ. 2009. Gene-environment interaction in genome-wide association studies. Am J Epidemiol 169(2):219-26.
Nguyen T, Rubinstein NA, Vijayasarathy C, Rome LC, Kaiser LR, Shrager JB, Levine S. 2005. Effect of chronic obstructive pulmonary disease on calcium pump ATPase expression in human diaphragm. Journal of Applied Physiology 98(6):2004-2010.
Nilsson KW, Oreland L, Kronstrand R, Leppert J. 2009. Smoking as a product of gene–environment interaction. Upsala journal of medical sciences 114(2):100-107.
Oke JL, Stevens RJ, Gaitskell K, Farmer AJ. 2012. Establishing an evidence base for frequency of monitoring glycated haemoglobin levels in patients with Type 2 diabetes: projections of effectiveness from a regression model. Diabet Med 29(2):266-71.
Pan W. 2009. Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society 33(6):497-507.
Pan W, Basu S, Shen X. 2011. Adaptive tests for detecting gene-gene and gene-environment interactions. Hum Hered 72(2):98-109.
Pan W, Chen YM, Wei P. 2015. Testing for polygenic effects in genome-wide association studies. Genet Epidemiol 39(4):306-16.
Pausova Z, Tremblay J, Hamet P. 1999. Gene-environment interactions in hypertension. Current hypertension reports 1(1):42-50.
Pavlova O, Malugin V, Ogurtsova S, Novopolcev AY, Gorbat T, Liventseva M, Mrochek A. 2016. Computer modeling of gene-gene and gene-environment interaction in essential hypertension. ISBRA. Minsk.
Peyrot WJ, Milaneschi Y, Abdellaoui A, Sullivan PF, Hottenga JJ, Boomsma DI, Penninx BW. 2014. Effect of polygenic risk scores on depression in childhood trauma. Br J Psychiatry 205(2):113-9.
Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, Liang L, Curhan GC, Pasquale LR, Wiggs JL and others. 2014. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ 348:g1610.
Ryu W-S, Park J-B, Ko S-B, Hwang S-s, Kim Y-J, Kim D-E, Lee S-H, Yoon B-W. 2016. Diastolic dysfunction and outcome in acute ischemic stroke. Cerebrovascular Diseases 41(3-4):148-155.
Salome CM, King GG, Berend N. 2009. Physiology of obesity and effects on lung function. Journal of Applied Physiology 108(1):206-211.
Schnabel E, Nowak D, Brasche S, Wichmann HE, Heinrich J. 2011. Association between lung function, hypertension and blood pressure medication. Respir Med 105(5):727-33.
Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, Bouatia-Naji N, Langenberg C, Prokopenko I, Stolerman E and others. 2010. Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. Diabetes 59(12):3229-39.
Špinar J. 2012. Hypertension and ischemic heart disease. Cor et Vasa 54(6):e433-e438.
Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE. 2002. Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Human molecular genetics 11(24):3039-3046.
Tanskanen T, van den Berg L, Välimäki N, Aavikko M, Ness‐Jensen E, Hveem K, Wettergren Y, Bexe Lindskog E, Tõnisson N, Metspalu A. 2018. Genome‐wide association study and meta‐analysis in Northern European populations replicate multiple colorectal cancer risk loci. International journal of cancer 142(3):540-546.
Taylor JY, Sun YV, Hunt SC, Kardia SL. 2010. Gene-environment interaction for hypertension among African American women across generations. Biol Res Nurs 12(2):149-55.
Thomas D. 2010. Gene--environment-wide association studies: emerging approaches. Nat Rev Genet 11(4):259-72.
Trotta A, Iyegbe C, Di Forti M, Sham PC, Campbell DD, Cherny SS, Mondelli V, Aitchison KJ, Murray RM, Vassos E and others. 2016. Interplay between Schizophrenia Polygenic Risk Score and Childhood Adversity in First-Presentation Psychotic Disorder: A Pilot Study. PLoS One 11(9):e0163319.
Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN, Jones SE, Tuke MA, Ruth KS, Freathy RM, Davey Smith G and others. 2017. Gene-obesogenic environment interactions in the UK Biobank study. Int J Epidemiol 46(2):559-575.
Vink JM, Hottenga JJ, de Geus EJ, Willemsen G, Neale MC, Furberg H, Boomsma DI. 2014. Polygenic risk scores for smoking: predictors for alcohol and cannabis use? Addiction 109(7):1141-51.
Vlassopoulos A, Lean ME, Combet E. 2013. Influence of smoking and diet on glycated haemoglobin and'pre-diabetes’ categorisation: a cross-sectional analysis. BMC Public Health 13(1):1013.
Waldmann P, Meszaros G, Gredler B, Fuerst C, Solkner J. 2013. Evaluation of the lasso and the elastic net in genome-wide association studies. Front Genet 4:270.
Wang C, Sun J, Guillaume B, Ge T, Hibar DP, Greenwood CMT, Qiu A, Alzheimer's Disease Neuroimaging I. 2017. A Set-Based Mixed Effect Model for Gene-Environment Interaction and Its Application to Neuroimaging Phenotypes. Front Neurosci 11:191.
Wasserman L, Roeder K. 2009. High dimensional variable selection. Annals of statistics 37(5A):2178.
Waterworth DM, Talmud PJ, Bujac SR, Fisher RM, Miller GJ, Humphries SE. 2000. Contribution of apolipoprotein C-III gene variants to determination of triglyceride levels and interaction with smoking in middle-aged men. Arteriosclerosis, thrombosis, and vascular biology 20(12):2663-2669.
Windle M. 2016. Statistical Approaches to Gene X Environment Interactions for Complex Phenotypes: MIT Press.
Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82-93.
Xie Y, Pan W, Khodursky AB. 2005. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics 21(23):4280-8.
Young-Wolff KC, Enoch M-A, Prescott CA. 2011. The influence of gene–environment interactions on alcohol consumption and alcohol use disorders: A comprehensive review. Clinical psychology review 31(5):800-816.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71020-
dc.description.abstract基因環境交互作用在遺傳性狀上扮演著至關重要的角色,於遺傳流行病學上益發受到重視。然迄今為止,從全基因組關聯研究中偵測出基因環境交互作用仍然十分困難。為了克服這項難題,我們提出一個多基因方法來偵測基因環境交互作用。我們將全部單核甘酸多型性與環境因子交互作用效應綜合在一個檢定量中。如此一來,可迴避單核甘酸多型性逐一檢定或基因逐一檢定中所面臨的多重檢定校正懲罰,繼而提高統計檢定力。此外,透過多方的統計模擬評估,我們的方法除保持適當的型一誤差外,在多數情況下都比文獻上常用的多基因風險評分法更具檢定力。我們進而將這項方法應用至臺灣人體生物資料庫,探索於舒張壓、收縮壓、高血壓、強制呼出時肺活量、第一秒用力呼氣量、醣化血色素值、三酸甘油酯等性狀上,是否存在基因與吸菸、飲酒間的交互作用。我們發現除了基因與吸菸的交互作用對收縮壓的影響不達顯著外,其餘的基因環境交互作用皆達統計上的顯著 (P值<0.05)。總結言之,對於偵測基因環境交互作用,我們的多基因法是一正確且更具檢定力的方法。透過這項新方法,我們可偵測出更多過去未曾被發現的基因環境交互作用,並有助於增進我們對疾病成因的認知。zh_TW
dc.description.abstractGene-environment interaction (G x E interaction) plays a vital role in hereditary traits and has gained much attention in the field of genetic epidemiology. However, detecting G x E interactions in genome-wide association studies (GWAS) remains challenging to date. To address this difficulty, we here propose a polygenic test for detecting G x E interactions. We combine the interaction effects from all single-nucleotide polymorphisms (SNPs) in only one test statistic. Hence, we improve the statistical power by avoiding the harsh multiple-testing penalty in the single-marker analysis or the gene-based analysis. We evaluate the performance of our method with comprehensive simulations. Our method is shown to preserve the type I error rate, and it is more powerful than the commonly-used polygenic risk score (or genetic risk score) approach in most situations. Furthermore, we apply our method to Taiwan Biobank data to explore G x smoking or G x drinking interactions on diastolic blood pressure, systolic blood pressure, hypertension, forced vital capacity, forced expiratory volume in one second, glycated hemoglobin, triglyceride, etc. All the G x E polygenic test results are statistically significant (P-value < 0.05), except G x smoking interactions on systolic blood pressure. To conclude, our polygenic test is a valid and powerful approach for detecting G x E interactions. With this novel approach, we can identify more important G x E interactions that have not been reported previously. In this way, our approach can help to enhance the understanding of disease etiology.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:48:50Z (GMT). No. of bitstreams: 1
ntu-107-R05849016-1.pdf: 3881007 bytes, checksum: d655f4528f9ed228582c835058e8b8ef (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
Directory of Tables x
Directory of Figures xiii
1. Introduction 1
2. Method 3
2.1 Filtering methods 3
2.1.1 Marginal association of G with Y (filtered by the genetic main effect) 3
2.1.2 Correlation of G and E (filtered by gene-environment correlation) 3
2.2 Polygenic test 4
2.3 Pinpointing SNP x E interactions 7
2.4 Resampling FDR 8
3. Simulation studies 10
3.1 Introduction of Taiwan Biobank 10
3.2 Quality control and the pruning of SNPs 10
3.3 Simulation setting 11
3.3.1 Continuous traits: different-direction scenario 12
3.3.2 Continuous traits: same-direction scenario 12
3.3.3 Continuous traits: Type I error rate 13
3.3.4 Binary traits: Different-direction scenario 13
3.3.5 Binary traits: same-direction scenario 13
3.3.6 Binary traits: Type I error rate 14
3.4 Competitor methods 14
4. Application to Taiwan Biobank Data 18
4.1 Phenotypes under consideration 18
4.2 Environmental factors 20
4.3 Covariates 21
4.4 Filtering stage in the TWB analyses 22
5. Results 26
5.1 Simulation studies 26
5.2 Real data analyses 26
6. Discussion and conclusion 32
7. Reference 34
8. Tables 41
9. Figures 65
10. Appendix (PLINK and R code) 110
dc.language.isoen
dc.subject臺灣人體生物資料庫zh_TW
dc.subject基因環境交互作用zh_TW
dc.subject單核甘酸多型性zh_TW
dc.subject全基因組關聯研究zh_TW
dc.subject多基因方法zh_TW
dc.subjectpolygenic approachen
dc.subjectTaiwan Biobanken
dc.subjectGene-environment interactionen
dc.subjectgenome-wide association studiesen
dc.subjectSingle Nucleotide Polymorphismen
dc.title以多基因法來偵測基因環境交互作用zh_TW
dc.titleA polygenic approach for detecting
gene-environment interactions
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文宗(Wen-Chung Lee),李永凌(Yung-Ling Lee),楊欣洲(Hsin-Chou Yang),盧子彬(Tzu-Pin Lu)
dc.subject.keyword基因環境交互作用,臺灣人體生物資料庫,單核甘酸多型性,全基因組關聯研究,多基因方法,zh_TW
dc.subject.keywordGene-environment interaction,Taiwan Biobank,Single Nucleotide Polymorphism,genome-wide association studies,polygenic approach,en
dc.relation.page131
dc.identifier.doi10.6342/NTU201802221
dc.rights.note有償授權
dc.date.accepted2018-08-01
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved