Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71018
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平(Chang-Ping Yu)
dc.contributor.authorTsung-Min Hsiehen
dc.contributor.author謝宗旻zh_TW
dc.date.accessioned2021-06-17T04:48:44Z-
dc.date.available2018-08-02
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citationAlcántara, C., Garcíaencina, P. A., & Muñoz, R. (2015). Evaluation of the simultaneous biogas upgrading and treatment of centrates in a high-rate algal pond through c, n and p mass balances. Water Science & Technology A Journal of the International Association on Water Pollution Research, 72(1), 150-7.
An, M., Lo, K.V. (2001) Acitivated sludge immobilization using the PVA-alginate-borate method. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 36, 101–115.
Bhave, R. (1997). Fundamentals of inorganic membrane science and technology : a.j. burggraaf and l. cot (eds.), elsevier, amsterdam, 1996, 708pp, isbn 0-444-81877-4, dft625.00, us$390.75. Journal of Membrane Science, 137(s 1–2), 277.
Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. (2014). Membrane technology in microalgae cultivation and harvesting: a review. Biotechnology Advances, 32(7), 1283-1300.
Boon, N., Top, E. M., Verstraete, W., & Siciliano, S. D. (2003). Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol, 69(3), 1511-1520.
Boonchai, R., & Seo, G. (2015). Microalgae membrane photobioreactor for further removal of nitrogen and phosphorus from secondary sewage effluent. Korean Journal of Chemical Engineering, 32(10), 1-6.
Braghetta, A., Sciences, U. o. N C. a. C. H D. o. E,&Engineering. (1995) The Intuence of Solution Chemistry and Operating Condittions on Nanofitration Charged and Uncharged Organic Macromolecules: University of North Carolina Chapel Hill
Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable & Sustainable Energy Reviews, 19(1), 360-369.
Carroll, T., King, S., Gray, S. R., Bolto, B. A., & Booker, N. A. (2000). The fouling of microfiltration membranes by nom after coagulation treatment. Water Research, 34(11), 2861-2868.
Cassidy, M. B., Mullineers, H., Lee, H., & Trevors, J. T. (1997). Mineralization of pentachlorophenol in a contaminated soil by pseudomonas, sp ug30 cells encapsulated in κ-carrageenan. Journal of Industrial Microbiology & Biotechnology, 19(1), 43-48.
Chen, B., Chen, S., Chang, J. (2005) Immobilized cell fixed-bed bioreactor for wastewater decolorization. Process Biochemistry, 40, 3434–3440.
Chen, K.C., Chen, S.J., Houng, J.Y. (1996) Improvement of gas permeability of denitrifying PVA gel beads. Enzyme and Microbial Technology, 18, 502–506.
Chen, K.C., Lee, S.C., Chin, S.C., Houng, J.Y. (1998) Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme andMicrobial Technology, 23, 311–320.
Chen, K.C., Lin, Y.F. (1994) Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme and Microbial Technology, 16, 79–83.
Chen, K.C., Wu, J.Y., Huang, C.C., Liang, Y.M., Hwang, S.C. (2003) Decolorization of azo dye using PVA-immobilized microorganisms. Journal of Biotechnology, 101, 241–252.
Chih-Cheng Chang, & Szu-Kung Tseng. (1998). Immobilization of alcaligenes eutrophus using pva crosslinked with sodium nitrate. Biotechnology Techniques, 12(12), 865-868.
Childress, A. E., & Elimelech, M. (1996). Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 119(2), 253-268.
Choi, H. (2015). Intensified production of microalgae and removal of nutrient using a microalgae membrane bioreactor (mmbr). Appl Biochem Biotechnol, 175(4), 2195-2205.
Cunningham, C. J., Ivshina IBLozinsky, V. I., Kuyukina, M. S., & Philp, J. C. (2004). Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. International Biodeterioration & Biodegradation, 54(2), 167-174.
Dong, Y., Chen, S., Zhang, X., Yang, J., Liu, X., & Meng, G. (2006). Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite. Journal of Membrane Science, 281(1–2), 592-599.
Dulieu, C., Poncelet, D., Neufeld, R.J. (1999) in: Kuhtreiber, W.M., Lanza, R.P., Chick, W.L. (Eds.), Cell Encapsulation Technology and Therapeutics, Birkhauser, Boston, MA, 3–17.
Evans, P. J., Bird, M. R., Pihlajamäki, A., & Nyström, M. (2008). The influence of hydrophobicity, roughness and charge upon ultrafiltration membranes for black tea liquor clarification. Journal of Membrane Science, 313(1–2), 250-262.
Fan, L., Harris, J. L., Roddick, F. A., & Booker, N. A. (2001). Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Research, 35(18), 4455-63.
Fang, H., Wenrong, H., Yuezhong, L. (2004) Investigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS. Water Research, 38, 3596–3604.
Fraser, J. E., & Bickerstaff, G. F. (1997). Entrapment in calcium alginate. Methods in Biotechnology, 61-66.
Fraser, J.E., Bickerstaff, G.F. (1997) in: Bickerstaff, G.F. (Ed.), Immobilization of Enzymes and Cells, Humana Press, Totowa, NJ.
Freeman, S., & Shorney-Darby, H. (2011). What's the buzz about ceramic membranes?. Journal American Water Works Association, 103(12), 12-13.
Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Feng, L. J., & Liu, J. Z., et al. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61.
Gao, F., Li, C., Yang, Z., Zeng, G., Mu, J., & Liu, M., et al. (2016). Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. Journal of Chemical Technology & Biotechnology, 91(10), 2713-2719.
Gao, F., Yang, Z. H., Li, C., Wang, Y. J., Jin, W. H., & Deng, Y. B. (2014). Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresource Technology, 167(3), 441-446.
Gentry, T.J., Rensing, C., Pepper, I.L. (2004). New approaches for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science & Technology, 34(5), 447-494.
Gordon F. Bickerstaff. (2006). Immobilization of enzymes and cells. Methods in Molecular Biology, 25(4), 232-232.
Guiot, S. R., Tawfiki-Hájji, K., & Lépine, F. (1999). Immobilization strategies for bioaugmentation of anaerobic reactors treating phenolic compounds. Nature, 356(6364), 63-66.
Guiseley, K. B. (1989). Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme & Microbial Technology, 11(11), 706-716.
Ha, J., Engler, C.R., Wild, J.R. (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresource Technology, 100, 1138–1142.
Hajji, K. T., Lépine, F., Bisaillon, J. G., Beaudet, R., Hawari, J., & Guiot, S. R. (2000). Effects of bioaugmentation strategies in uasb reactors with a methanogenic consortium for removal of phenolic compounds. Biotechnology & Bioengineering, 67(4), 417.
Hashimoto, S., & Furukawa, K. (2010). Immobilization of activated sludge by pva-boric acid method. Biotechnology & Bioengineering, 30(1), 52-59.
Hofs, B., Ogier, J., Vries, D., Beerendonk, E. F., & Cornelissen, E. R. (2011). Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Separation & Purification Technology, 79(3), 365-374.
Hong, S., & Elimelech, M. (1997). Chemical and physical aspects of natural organic matter (nom) fouling of nanofiltration membranes. Journal of Membrane Science, 132(2), 159-181.
Hsieh H P, Bhave R. R., Fleming H. L. (1988). J. Membr Sci., 39, 221
Hsieh H P. (1988). Inorganic Membranes. AIChE Symp Ser, 261, 1
Hunt, P. G., Matheny, T. A., & Ro, K. S. (2008). Denitrification of agricultural drainage line water via immobilized denitrification sludge. J Environ Sci Health A Tox Hazard Subst Environ Eng, 43(9), 1077-1084.
Jen, A.C., Wake, M.C., Mikos, A.G. (1996) Review: hydrogels for cell immobilization. Biotechnology and Bioengineering, 50, 357–364.
Jittawattanarat, R., Kostarelos, K., & Khan, E. (2007). Immobilized-cell-augmented activated sludge process for treating wastewater containing hazardous compounds. Water Environment Research A Research Publication of the Water Environment Federation, 79(5), 461.
Jittawattanarat, R., Kostarelos, K., & Khan, E. (2007). Immobilized cell augmented activated sludge process for enhanced nitrogen removal from wastewater. Water Environment Research, 79(11), 2325-2335.
Khan, E. Yang, P.Y., Kinoshita, C.M. (1994) Bioethanol production from dilute feedstock. Bioresource Technology, 4, 29–38.
Kok, F.N., Hasirci, V. (2000) in: Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I., Stottmeieter U. (Eds.), Bioremediation of Contaminated Soils, Marcel Dekker, New York, 465–535.
Kourkoutas, Y., Bekatorou, A., Banat, I.M., Marchant, R., Koutinas, A.A. (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21, 377–397.
Kramer, F. C., Shang, R., Heijman, S. G. J., Scherrenberg, S. M., Lier, J. B. V., & Rietveld, L. C. (2015). Direct water reclamation from sewage using ceramic tight ultra- and nanofiltration. Separation & Purification Technology, 147, 329-336.
Kumar, A., Yuan, X., Sahu, A. K., Ergas, S. J., Langenhove, H. V., & Dewulf, J. (2010). A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology & Biotechnology Biotechnology, 85(3), 387-394.
Lahiere R J, Goodboy K P. (1993). Environmental Progress, 12(2), 86
Lee, S. J., Dilaver, M., Park, P. K., & Kim, J. H. (2013). Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. Journal of Membrane Science, 432(432), 97-105.
Leenen, E.J., Dos, S.V., Grolle, K.C., Tramper, J.,Wijffels, R.H. (1996) Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Water Research, 30, 2985–2996.
Li, H., Li, P., Hua, T., Zhang, Y., Xiong, X., Gong, Z. (2005a) Bioremediation of contaminated surface water by immobilized Micrococcus roseus. Environmental Technology, 26, 931–939.
Li, P., Wang, X., Stagnitti, F., Li, L., Gong, Z., & Zhang, H., et al. (2005b). Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria zoogloea sp. Environmental Engineeringence, 22(3), 390-399.
Li, P., Wang, X., Stagnitti, F., Li, L., Gong, Z., & Zhang, H., et al. (2005). Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria zoogloea sp. Environmental Engineeringence, 22(3), 390-399.
Liikanen, R., Yli-Kuivila, J., & Laukkanen, R. (2002). Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. Journal of Membrane Science, 195(2), 265-276.
Lin, C. F., Lin, T. Y., & Hao, O. J. (2000). Effects of humic substance characteristics on uf performance. Water Research, 34(4), 1097-1106.
Low, S. L., Ong, S. L., & Ng, H. Y. (2014). Biodiesel production by microalgae cultivated using permeate from membrane bioreactors in continuous system. Water Science & Technology A Journal of the International Association on Water Pollution Research, 69(9), 1813.
Lu, H., Ma, S., Zhang, Y., Liu, Z., & Duan, N. (2017). Progress in microalgae cultivation photobioreactors and applications in wastewater treatment&58; a review. International Journal of Agricultural & Biological Engineering, 10(1), 1-29.
M. B. Cassidy, K. W. Shaw, H. Lee, & J. T. Trevors. (1997). Enhanced mineralization of pentachlorophenol by κ-carrageenan-encapsulated pseudomonas, sp. ug30. Applied Microbiology & Biotechnology, 47(2), 108-113.
Marbelia, L., Bilad, M. R., Passaris, I., Discart, V., Vandamme, D., & Beuckels, A., et al. (2014). Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresource Technology, 163(7), 228-235.
Matsumoto Y, Nakao S and Kimura S. (1988). Intl. Chem. Eng., 28(4), 677
Mcloughlin, A. J. (1994). Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. Biotechnics/Wastewater. Springer Berlin Heidelberg.
Molis, E., Lucas, P., Riley, R., & Clark, M. M. (1999). The effect of ca membrane properties on adsorptive fouling by humic acid. Journal of Membrane Science, 154(98), 73–87.
Moutaouakkil, A., Zeroual, Y., Dzayri, F.Z., Talbi, M., Lee, K., Blaghen, M. (2004) Decolorization of azo dyes with Enterobacter agglomerans immobilized in different supportsby using fluidized bed bioreactor. Current Microbiology, 48, 124–129.
Nigam, J. N. (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology, 80(2), 189-193.
Olson, A. C., & Cooney, C. L. (1974). Immobilized enzymes in food and microbial processes.
Park, J.K. Chang, H.N. (2000) Microencapsulation of microbial cells. Biotechnology Advances, 18, 303–319.
Pepper, I. L., Gentry, T. J., Newby, D. T., Roane, T. M., & Josephson, K. L. (2002). The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environmental Health Perspectives, 110(Suppl 6), 943-946.
Pramanik, S., Khan, E. (2008) Effects of cell entrapment on growth rate and metabolic activity of mixed cultures in biological wastewater treatment. Enzyme and Microbial Technology, 43, 245–251.
Praveen, P., & Loh, K. C. (2016). Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photobioreactor. Bioresour Technol, 206, 180-187.
Qin, J. J., Oo, M. H., Wai, M. N., Lee, H., Hong, S. P., & Kim, J. E., et al. (2005). Pilot study for reclamation of secondary treated sewage effluent. Desalination, 171(3), 299-305.
Ramesh, R. B. P. D. (1991). Inorganic Membranes Synthesis, Characteristics and Applications. Van Nostrand Reinhold.
Rostron, W.M., Stuckey, D.C., Young, A.A. (2001) Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media. Water Research, 35, 1169–1178.
Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101(1), 58-64.
Singh, G., & Thomas, P. B. (2012). Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour Technol, 117(117), 80-85.
Siripattanakul, S., & Khan, E. (2010). Fundamentals and Applications of Entrapped Cell Bioaugmentation for Contaminant Removal. Emerging Environmental Technologies, Volume II. Springer Netherlands.
Siripattanakul, S., Pochant, C. J., & Khan, E. (2010). Nitrate removal from agricultural infiltrate by bioaugmented free and alginate entrapped cells. Water Environment Research, 82(7), 617-21.
Siripattanakul, S., Wirojanagud, W., Mcevoy, J. M., Casey, F. X., & Khan, E. (2009). Atrazine removal in agricultural infiltrate by bioaugmented polyvinyl alcohol immobilized and free agrobacterium radiobacter j14a: a sand column study. Chemosphere, 74(2), 308-13.
Siripattanakul, S., Wirojanagud, W., Mcevoy, J., & Khan, E. (2008). Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures on atrazine degradation. Water Air & Soil Pollution Focus, 8(3-4), 257-266.
Smidsrød, O., & Skja˚K-Br˦K, G. (1990). Alginate as immobilization matrix for cells. Trends in Biotechnology, 8(3), 71-78.
Song, S.H., Choi, S.S., Park, K., Yoo, Y.J. (2005) Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme and Microbial Technology, 37, 567–573.
Sukačová, K., Trtílek, M., & Rataj, T. (2015). Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Research, 71, 55-63.
T. Roukas. (2010). Ethanol production from non-sterilized beet molasses by free and immobilized saccharomyces cerevisiae, cells using fed-batch culture. Biotechnology and Bioengineering, 43(3), 189-194.
Takeno, K., Yamaoka, Y., & Sasaki, K. (2005). Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria. World Journal of Microbiology & Biotechnology, 21(8-9), 1385-1391.
Tal, Y., Nussinovitch, A., van Rijn, J. (2003) Nitrate removal in aquariums by immobilized Pseudomonas. Biotechnology Progress, 19, 1019–1021.
Taylor, J.S. and M. Wiesner. (1999). “Membranes” Chapter 11 in Water Quality and Treatment, fifth edition, McGraw-Hill, New York
Torres, L.G., Vega, A.S., Beltran, N.A., Jimenez, B.E. (1998) Production and characterization of a Ca-alginate biocatalyst for removal of phenol and chlorophenols from wastewaters. Process Biochemistry, 33, 625–634.
Tranha, M. H., Wiley, D. E., Lawrence, N. D., & Iyer, M. (2002). Development of a standard cleaning protocol to evaluate the effect of cleaning on membrane performance. Australian Journal of Dairy Technology, 57(1), 20.
van Veen, J. A., van Overbeek, L. S., & van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiol.mol.biol.rev, 61(2), 121.
Van, W. J., Pape, M. L., & Angelidaki, I. (2015). Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique. Water Research, 75, 301-311.
Vancov, T., Jury, K., Rice, N., Zwieten, L. V., & Morris, S. (2007). Atrazine degrading rhodococcus erythropolis ni86/21 cells encapsulated in alginate beads. Journal of Applied Microbiology, 102(1), 212-220.
Veliky, I. A., & Mclean, R. J. C. (1994). Immobilized biosystems : theory and practical applications. Blackie Academic & Professional.
Wang, Y. H., Wu, C. M., Wu, W. L., Chu, C. P., Chung, Y. J., & Liao, C. S. (2013). Survey on nitrogen removal and membrane filtration characteristics of chlorella vulgaris beij. on treating domestic type wastewaters. Water Science & Technology A Journal of the International Association on Water Pollution Research, 68(3), 695-704.
Wu, K. Y., & Wisecarver, K. D. (1992). Cell immobilization using pva crosslinked with boric acid. Biotechnology & Bioengineering, 39(4), 447-9.
Wu, S.Y., Lin, C.N., Chang, J.S., Lee, K.S., Lin, P.J. (2002) Microbial hydrogen production with immobilized sewage sludge. Biotechnology Progress, 18, 921–926.
Xu, M., Bernards, M., & Hu, Z. (2014). Algae-facilitated chemical phosphorus removal during high-density chlorella emersonii cultivation in a membrane bioreactor. Bioresource Technology, 153(2), 383-387.
Yang, C.F., Lee, C.M. (2008) Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system. Journal ofHazardous Materials, 152, 159–165.
Yang, H., Wright, J.R. (1999) in: Kuhtreiber, W.M., Lanza, R.P., Chick, W.L. (Eds.), Cell Encapsulation Technology and Therapeutics, Birkhauser, Boston, MA, 79–89, Humana Press, New Jersey, 61–66.
Yang, P. Y., & See, T. S. (1991). Packed entrapped mixed microbial cell process for removal of phenol and its compounds. Environmental Letters, 26(8), 1491-1512.
Yang, P.Y., Ma, T., Chen, H.J. (1997a) The PEMMC process for land-limited small wastewater-treatment plants. Bioresource Technology, 60, 35–42.
Yang, P.Y., Nitisoravut, S., Wu, J.S. (1995) Nitrate removal using a mixed-culture entrapped microbial cell immobilization process under high salt conditions. Water Research, 29, 1525–1532.
Yang, P.Y., Zhang, Z.Q., Jeong, B.G. (1997b) Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process. Water Research, 31, 2617–2625.
Zhang, X., Devanadera, M. C. E., Roddick, F. A., Fan, L., & Dalida, M. L. P. (2016). Impact of algal organic matter released from microcystis aeruginosa, and chlorella, sp. on the fouling of a ceramic microfiltration membrane. Water Research, 103, 391.
Zhang, X., Fan, L., & Roddick, F. A. (2013). Understanding the fouling of a ceramic microfiltration membrane caused by algal organic matter released from microcystis aeruginosa. Journal of Membrane Science, 447(22), 362-368.
Zhenfeng, S., Xin, L., Hongying, H., Yinhu, W., & Tsutomu, N. (2011). Culture of scenedesmus sp. lx1 in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresource Technology, 102(17), 7627.
Zhou, X.Y., Liu, L.X., Chen, Y.P., Xu, S.F., Chen, J. (2007) Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii. Canadian Journal of Microbiology, 53(9), 1033–1037.
林玠佑(2014)。強化混凝結合薄膜系統去除消毒程序前之水中溶解性有機質(碩士論文)。國立台灣大學環境工程學研究所。
吳偲瑀(2015)。強化混凝-臭氧-薄膜處理提升過濾程序出水 溶解性有機物質之去除(碩士論文)。國立台灣大學環境工程學研究所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71018-
dc.description.abstract以微藻處裡廢水之工藝已被研究與持續發展,將微藻與薄膜生物反應器結合就形成微藻膜生物反應槽,該技術結合了微藻處理與薄膜分離技術之優勢,能高效截留生物質,提高微藻濃度,且膜能夠實現藻體的分離和採收,防止微藻膜生物排入水體,出水質量很高,可以利於水回收再利用。本研究將建構微藻膜生物反應槽並將陶瓷膜應用於該系統,陶瓷膜具有操作壓力範圍廣、耐受pH值範圍大、低阻塞潛勢與操作壽命長等優勢,其操作模式為錯流過濾,另外找出有效清除藻類於陶瓷膜上產生阻塞的方法。將陶瓷膜應用於微藻膜生物反應槽後,將加入微藻固定化技術,評估固定化微藻於反應槽操作時,是否能有效減輕薄膜阻塞,並了解固定化是否對藻類去除氮磷營養鹽能力有所影響。
本研究挑選四種藻種:羊角月牙藻、雨生紅球藻、四尾柵藻、小球藻,合成廢水批次式試驗結果顯示雨生紅球藻與四尾柵藻於人工合成二級出流廢水中,在相同數量下,去除營養鹽能力大於羊角月牙藻與小球藻,而固定化亦可提升此兩藻類的去除效率,雨生紅球藻對氮、磷營養鹽去除效率分別提升至74.23 ± 11.19%與37.38 ± 16.55%,四尾柵藻則為39.08 ± 3.22%與37.65 ± 10.72%。而在BG11培養基與人工合成二級出流廢水中,四尾柵藻生長速率均高於雨生紅球藻,為同時評估藻類於反應槽內生長狀況與造成薄膜阻塞情事,且有效降解廢水中的營養鹽,故宜挑選四尾柵藻於微藻膜生物反應槽中運行。本研究所使用之非在線清洗方式相比於化學反洗、化學反洗加正洗、單純正洗清理方式,能有效回復藻類於陶瓷膜造成之阻塞,經三次試驗回復率均達到99%。藻類固定化技術可有效將藻類停留與反應槽中,並防止藻類直接與陶瓷膜接觸,在連續流試驗自由藻類造成薄膜通量下降百分比為38.65%,而經固定化後可減輕為29.15%。透過增加連續流試驗中之藻類數量,可有效提升氮磷營養鹽去除效率,連續流固定化組別藻類濃度後期達到1754 MLSS mg/L,氮去除率達到63.45 ± 1.92%,磷去除率則為58.44 ± 4.72%。
zh_TW
dc.description.abstractThe Algae-Membrane Bioreactor (A-MBR) was proposed and studied nowadays. The A-MBR can rise the biomass of microalgae efficiently and the quality of effluent. The ceramic membrane is used for A-MBR in this study. We try to find out the most efficient cleaning method for cleaning algae fouling on ceramic membrane. The algae immobilized will also test in A-MBR, we expect that immobilized can reduce the algae fouling.
Chlorella vulgaris, Pseudokirchneriella subcapitata, Scenedesmus quadricauda and Haematococcus pluvialis were chose and cultivated in BG11 medium, In artificial wastewater (AWW) batch test, For free type, nitrate removal efficiency for four algae were similar. And S. quadricauda was the highest (23.06 ± 1.75%). For immobilized type, highest nitrate removal efficiency was 74.23 ± 11.19% of H. pluvialis, and S. quadricauda had the highest phosphate removal efficiency for 37.65 ± 10.72%. After that, leakage counting test showed that Chlorella vulgaris had the highest percentage for 1.3 ± 0.3%. The number of algae leakage was quiet low.
Three cleaning method was tested in A-MBR. Results showed that offline cleaning method could fully recover the flux for triplicate trial. For flux declining batch test of A-MBR, results showed that flux reduction percentage for free and immobilized algae were 41.5 ± 14.01%、33.7 ± 0.89%. Flux reduction for Immobilized algae was less than free algae. For continues mode A-MBR in immobilized type, nitrate and phosphate removal efficiency were 18.69 ± 6.52% and 19.07 ± 6.84%. To improve the nutrient removal efficiency in A-MBR, the bioreactor was modified and raised the number of algae to 1754 MLSS mg/L. Afterward, nitrate and phosphate removal efficiency was 63.45 ± 1.92% and 58.44 ± 4.72%.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:48:44Z (GMT). No. of bitstreams: 1
ntu-107-R05541124-1.pdf: 5733898 bytes, checksum: 108a6d1487801b2cc36490cc72c2225b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1. 研究背景 1
1.2. 研究動機 2
1.3. 研究目的 3
第二章 文獻回顧 4
2.1. 微藻膜生物反應槽 4
2.1.1. 微藻膜生物反應槽之原理 4
2.1.2. 反應槽之構型 6
2.1.3. 微藻與污染物去除 7
2.1.4. 反應槽操作參數 9
2.2. 薄膜 11
2.2.1. 薄膜材質與形式 11
2.2.2. 薄膜分離與影響因子 12
2.2.3. 陶瓷膜 13
2.2.4. 薄膜積垢生成 14
2.2.5. 薄膜積垢清除 15
2.3. 微藻固定化技術 16
2.3.1. 截留細胞強化技術 16
2.3.2. 固定化之材料與特性 17
2.4.1. 固定化之方法與種類 18
2.4.2. 固定化之應用 24
第三章 材料與方法 26
3.1. 實驗藥品與設備 26
3.1.1. 實驗用藥品 26
3.1.2. 實驗設備與儀器 28
3.2. 實驗流程圖 30
3.3. 藻種選定與培養 32
3.3.1. 藻種選定 32
3.3.2. 純種藻種培養 33
3.3.3. 微藻定量片與計數 35
3.4. 微藻固定化技術 37
3.4.1. 微藻固定化程序 37
3.5. 人工合成二級出流廢水 39
3.5.1. 批次試驗 39
3.6. 微藻膜生物反應槽 41
3.6.1. 陶瓷膜 41
3.6.2. 反應槽幫浦選定 43
3.6.3. 反應槽設計與構型 47
3.7. 薄膜積垢清洗方法試驗 49
3.7.1. 清洗方法 49
3.7.2. 薄膜系統清洗操作 49
3.8. 微藻膜批次過濾試驗 51
3.8.1. 批次過濾試驗 51
3.8.2. 通量下降曲線 51
3.8.3. 營養鹽去除效率 51
3.9. 微藻膜連續流試驗 52
3.9.1. 連續流試驗 52
3.10. 其他分析方法 53
3.10.1. 混合液懸浮固體(MLSS) 53
3.10.2. 水中陰離子檢測方法-離子層析法 53
3.10.3. 掃描式電子顯微鏡 53
第四章 結果與討論 54
4.1. 微藻培養試驗 54
4.1.1. 微藻培養生長曲線 54
4.2. 人工合成廢水批次試驗 56
4.2.1. 硝酸鹽-氮營養鹽去除效率 56
4.2.2. 磷酸鹽-磷營養鹽去除效率 58
4.2.3. 氮磷營養鹽總去除效率 60
4.2.4. 藻類於人工合成廢水生長速率 62
4.2.5. 固定化藻球藻類滲漏檢測 64
4.3. 反應槽幫浦選定試驗 65
4.3.1. 柱塞泵試驗 65
4.3.2. 磁力泵試驗 66
4.3.3. 隔膜泵試驗 67
4.3.4. 齒輪泵試驗 67
4.4. 陶瓷膜阻塞清洗方法試驗 68
4.4.1. 通量回復曲線 68
4.5. 批次式薄膜過濾試驗 70
4.5.1. 通量下降曲線 70
4.5.2. 氮磷營養鹽去除效率 73
4.6. 連續式薄膜過濾試驗 74
4.6.1. 通量下降曲線 74
4.6.2. 反應槽營養鹽濃度 77
4.6.3. 營養鹽去除效率 79
4.6.4. 藻類生長曲線 82
4.6.5. 藻類數量試驗與反應槽調整 84
4.7. 固定化藻類SEM 結果 88
第五章 結論與建議 92
5.1 結論 92
5.2 建議 93
參考文獻 94
dc.language.isozh-TW
dc.title以陶瓷膜應用於微藻膜生物反應槽去除廢水中之氮磷營養鹽zh_TW
dc.titleApplying ceramic membrane in algae-based membrane bioreactor to remove nitrogen and phosphorous nutrients from wastewateren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭獻文,黃郁慈
dc.subject.keyword微藻膜生物反應槽,陶瓷膜,錯流過濾,藻類固定化,氮磷營養鹽,zh_TW
dc.subject.keywordAlgae-based membrane bioreactor,ceramic membrane,crossflow filtration,algae immobilized,nitrate,phosphate,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201802306
dc.rights.note有償授權
dc.date.accepted2018-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
5.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved