請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71014
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊燿州 | |
dc.contributor.author | Da-Chun Yang | en |
dc.contributor.author | 楊大儁 | zh_TW |
dc.date.accessioned | 2021-06-17T04:48:32Z | - |
dc.date.available | 2020-08-01 | |
dc.date.copyright | 2018-08-06 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-31 | |
dc.identifier.citation | 參考文獻 [1] https://www.raynofilm.com/smartfilm [2] http://www.igm.unistuttgart.de/forschung/arbeitsgebiete/fluessigkristall/index.en.html. [3] S.-K. Fan, C.-P. Chiu, and J.-W. Lin, “Electrowetting on polymer dispersed liquid crystal,” Applied physics letters, vol. 94, no. 16, pp. 164109, 2009. [4] C.-C. Lee, Y.-S. Ting, and W. Fang, “Development of passive and active microprism arrays to change the radiation pattern of solid-state lighting,” Journal of Micromechanics and Microengineering, vol. 22, no. 10, pp. 105038, 2012 [5] J. Jiang, G. MacGraw, R. Ma, J. Brown, and D.-K. Yang, “Selective scattering polymer dispersed liquid crystal film for light enhancement of organic light emitting diode,” Optic Express, vol. 25, no. 4, pp. 3327-3335, 2017. [6] E. Scherschener, C. D. Perciante, E. A. Dalchiele, E. M. Frins, M. Korn, J. A. Ferrari, “Polymer-dispersed liquid-crystal voltage sensor,” Applied Optics, vol. 45, no. 15, pp. 3482-3488, 2006. [7] O. Trushkevych, T. J. R. Eriksson, S. N. Ramadas, S. Dixon, and R. S. Edwards, “Ultrasound sensing using the acousto-optic effect in polymer dispersed liquid crystals,” Applied physics letters,. [8] S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes and Pigments, vol. 134, pp. 36-40, 2016. [9] Y.-T. Lai, J.-C. Kuo, and Y.-J. Yang, “Polymer-dispersed liquid crystal doped with carbon nanotubes for dimethyl methylphosphonate vapor-sensing application,” Applied physics letters, vol. 102, no. 19, pp. 191912, 2013. [10] B. R. Donald, C. G. Levey, C. D. McGray, D. Rus, and M. Sinclair, “Power delivery and locomotion of untethered microactuators,” Journal of Microelectromechanical Systems, vol. 12, no. 6, pp. 947-959, 2003. [11] B. R. Donald, C. G. Levey, C. D. McGray, I. Paprotny, and D. Rus, “An untethered, electrostatic, globally controllable MEMS micro-robot,” Journal of microelectromechanical systems, vol. 15, no. 1, pp. 1-15, 2006. [12] B. R. Donald, C. G. Levey, and I. Paprotny, “Planar microassembly by parallel actuation of MEMS microrobots,” Journal of Microelectromechanical Systems, vol. 17, no. 4, pp. 789-808, 2008. [13] O. Sul, M. Falvo, R. Taylor, S. Washburn, and R. Superfine, “Thermally actuated untethered impact-driven locomotive microdevices,” Applied Physics Letters, vol. 89, no. 20, pp. 203512, 2006. [14] W. Hu, K. S. Ishii, Q. Fanb, and A. T. Ohta, “Hydrogel microrobots actuated by optically generated vapour bubbles,” Lab on a Chip, vol. 12, pp. 3821-3826, 2012. [15] A. Búzás, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Applied Physics Letters, vol. 101, no. 4, pp. 041111, 2012. [16] M. Hirooka, S. P. Beh, T. Asano, Y. Akiyama, T. Hoshino, K. Hoshino, H. Tsujimura, K. Iwabuchi, and K. Morishima, “Evaluation and optical control of somatic muscle micro bioactuator of channelrhodopsin transgenic drosophila melanogaster,” in proceeding of IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 196-199. [17] P.-H. Kuo, J.-Y. Hsieh, Y.-C. Huang, Y.-J. Huang, T. Wang, S.-S. Lu, “A remotely-controlled locomotive IC driven by electrolytic bubbles and wireless powering,” in proceeding of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, Feb 9-13, 2014, pp. 322-323. [18] J. Feng and S. K. Cho, “Two-dimensionally steering microswimmer propelled by oscillating bubbles,” in proceeding of IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, Jan 26-30, 2014, pp. 188-191. [19] A. Suzuki, S. Maeda, Y. Hara, and S. Hashimoto, “Design and motion control of self-propelled droplets,” in proceeding of IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, Jan 26-30, 2014, pp. 310-313. [20] C. Huang, J. Lv, X. Tian, Y. Wang, Y. Yu, and J. Liu, “Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals,” Scientific Reports, vol. 5, pp. 17414, 2015 [21] T. Xu, F. Soto, W. Gao, V. Garcia-Gradilla, J. Li, X. Zhang, and J. Wang, “Ultrasound-modulated bubble propulsion of chemically powered microengines,” Journal of the American Chemical Society, vol. 136, no. 24, pp. 8552-8555, 2014. [22] T. G. Leong, C. L. Randall, B. R. Benson, N. Bassik, G. M. Stern, and D. H. Gracias, “Tetherless thermobiochemically actuated microgrippers,” Proceedings of the National Academy of Sciences, vol.106, np. 3, pp. 103-108, 2008. [23] D. R. Frutiger, K. Vollmers, B. E. Kratochvil, and B. J. Nelson, “Small, fast, and under control: wireless resonant magnetic micro-agents,” The International Journal of Robotics Research, vol. 29, no. 5, pp. 613-636, 2010. [24] M. S. Sakar, E. B. Steager, D. H. Kim, M. J. Kim, G. J. Pappas, and V. Kumar, “Single cell manipulation using ferromagnetic composite microtransporters,” Applied Physics Letter, vol. 96, no. 4, pp. 043705, 2010. [25] G.-L. Jiang, Y.-H. Guu, C.-N. Lu, P.-K. Li, H.-M. Shen, L.-S. Lee, J. A. Yeh, and M. T.-K. Hou, “Development of rolling magnetic microrobots,” Journal of Micromechanics and Microengineering, vol. 20, pp. 1-11, 2010. [26] J. Kim, S. E. Chung, S.-E. Choi, H. Lee, J. Kim, and S. Kwon, “Programming magnetic anisotropy in polymeric microactuators,” Nature materials, vol. 10, no. 10, pp. 747-752, 2011. [27] Y. Ko, S. Na, Y. Lee, K. Cha, S. Y. Ko, J. Park, and S. Park, “A jellyfish-like swimming mini-robot actuated by an electromagnetic actuation system,” Smart Materials and Structures, vol. 21, pp. 057001, 2012. [28] J.-C. Kuo, H.-W. Huang, S.-W. Tung, and Y.-J. Yang, “A hydrogel-based intravascular microgripper manipulated using magnetic fields,” Sensors and Actuators A: Physical, vol. 211, pp. 121-130, 2014. [29] G. Z. Lum, Z. Ye, X. Dong, H. Marvi, O. Erin, W. Hu, and M. Sitti, “Shape-programmable magnetic soft matter,” Proceedings of the National Academy of Sciences, vol. 113, no. 41, pp. 6607-6015, 2016. [30] H.-W. Huang, M. S. Sakar, A. J. Petruska, S. Pané, and B. J. Nelson, “Soft micromachines with programmable motility and morphology,” Nature Communications, vol.7, pp. 12263, 2016. [31] W. C. McCrone, L. B. McCrone, and J. G. Delly, Polarized light microscopy, Ann Arbor Science Publishers Inc. and McCrone Research Institute, 1978. [32] F. Reinitzer, “Contributions to the knowledge of cholesterol,” Liquid Crystals, vol. 5, no. 1, pp. 7-18, 1989. [33] C. Sandor, and K. R. Ira, 'Liquid crystal display device,' Google Patents, 1971. [34] http://www.nobelprize.org/nobel_prizes/physics/laureates/1991/. [35] S. Mohanty, “Liquid Crystals-The ‘Fourth’Phase of Matter,” Resonance, vol. 8, no. 11, pp. 52-70, 2003. [36] N. D. Mermin, “The topological theory of defects in ordered media,” Reviews of Modern Physics, vol. 51, no. 3, pp. 591, 1979. [37] C. D. Hoke, and P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” Journal of Applied Physics, vol. 88, no. 5, pp. 2302-2304, 2000. [38] P. G. de Gennes, and J. Prost, The physics of liquid crystals, Oxford, UK: Oxford university press, 1975. [39] P. J. Collings, and M. Hird, Introduction to liquid crystals: chemistry and physics, Boca Raton, FL: CRC Press, 1997. [40] A. Ray, “Liquid Crystal-A Review,” Asian Journal of Research In Chemistry, vol. 5, no. 4, 2012. [41] D. Andrienko, Introduction to liquid crystals, Bad Marienberg, DE: International Max Planck Research Schools (IMPRS), 2006. [42] I. Dierking, “Chiral liquid crystals: Structures, phases, effects,” Symmetry, vol. 6, no. 2, pp. 444-472, 2014. [43] F. C. Frank, “Liquid crystals. On the theory of liquid crystals,” Discussions of the Faraday Society, vol. 25, pp. 19-28, 1958. [44] C. Oseen, “The theory of liquid crystals,” Transactions of the Faraday Society, vol. 29, no. 140, pp. 883-899, 1933. [45] J. Algorri, V. Urruchi, P. Pinzón, and J. Sánchez-Pena, “Modeling electro-optical response of nematic liquid crystals by numerical methods,” Journal of Applied Physics, vol. 38, pp. 135-146, 1999. [46] G. Luckhurst, D. A. Dunmur, and A. Fukuda, Physical properties of liquid crystals: nematics, The Institution of Engineering and Technology (IET), 2001. [47] M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Progress in Polymer Science, vol. 28, no. 5, pp. 837-873, 2003. [48] H. Boots, J. Kloosterboer, C. Serbutoviez, and F. Touwslager, “Polymerization-Induced Phase Separation. 1. Conversion− Phase Diagrams,” Macromolecules, vol. 29, no. 24, pp. 7683-7689, 1996. [49] K. B. Zegadlo, H. El Ouazzani, I. Cieslik, R. Weglowski, J. Zmija, S. Klosowicz, A. Majchrowski, J. Mysliwiec, B. Sahraoui, and M. A. Karpierz, “Nonlinear optical properties of polymer dispersed liquid crystals doped with La2CaB10019,” Optical Materials, vol. 34, no. 10, pp. 1704-1707, 2012. [50] L. M. Ganesan, W. Wirges, A. Mellinger, and R. Gerhard, “Piezo-optical and electro-optical behaviour of nematic liquid crystals dispersed in a ferroelectric copolymer matrix,” Journal of Physics D: Applied Physics, vol. 43, no. 1, pp. 015401, 2009. [51] A. I. Mouquinho, K. Petrova, M. T. Barros, and J. Sotomayor, 'New Polymer Networks for PDLC Films Application,' in New Polymers for Special Applications, London, UK: InTechOpen, 2012, pp.139-162. [52] T. Zhang, M. Kashima, M. Zhang, F. Liu, P. Song, X. Zhao, C. Zhang, H. Cao, and H. Yang, “Effects of the functionality of epoxy monomer on the electro-optical properties of thermally-cured polymer dispersed liquid crystal films,” RSC Advances, vol. 2, no. 5, pp. 2144-2148, 2012. [53] A. Barannik, O. Prishchepa, A. Parshin, A. Shabanov, V. Nazarov, and V. Zyryanov, 'Magneto and electro-optical measurements of Freedericksz threshold in PDNLC films,' XV International Symposium on Advanced Display Technologies, vol. 6637, pp. 66370C, 2007. [54] S. Patnaik, and R. Pachter, “Anchoring characteristics and interfacial interactions in a polymer dispersed liquid crystal: a molecular dynamics study,” Polymer, vol. 40, no. 23, pp. 6507-6519, 1999. [55] S. Ueno, and M. Iwasaka, “Properties of diamagnetic fluid in high gradient magnetic fields,” Journal of Applied Physics, vol. 75, no. 10, pp. 7177-7179, 1994. [56] https://www.linkedin.com/pulse/measuring-principle-oxygen-through-paramag netic-property-fontes. [57] P. Craig, D. Nagle, W. Steyert, and R. Taylor, “Paramagnetism of Fe impurities in transition metals,” Physical Review Letters, vol. 9, no. 1, pp. 12, 1962. [58] B. D. Cullity, and C. D. Graham, Introduction to magnetic materials, Hoboken, NJ: John Wiley Sons, 2011. [59] D. Griffiths, Introduction to Electrodynamics, Riverside, NJ: Prentice Hall, 1981. [60] J. Reinert, A. Brockmeyer, and R. W. De Doncker, “Calculation of losses in ferro-and ferrimagnetic materials based on the modified Steinmetz equation,” IEEE Transactions on Industry applications, vol. 37, no. 4, pp. 1055-1061, 2001. [61] H.-H. Liang, and J.-Y. Lee, 'Enhanced electro-optical properties of liquid crystals devices by doping with ferroelectric nanoparticles,' in Ferroelectrics-Material Aspects, London, UK: InTechOpen, 2011, pp. 193-210. [62] Z. Li, J. Kelly, P. Palffy‐Muhoray, and C. Rosenblatt, “Comparison of magnetic and electric field induced switching in polymer dispersed liquid crystal films,” Applied Physics Letters, vol. 60, no. 25, pp. 3132-3134, 1992. [63] D. K. Cheng, Field and wave electromagnetics, London, UK: Pearson Education, 1989. [64] B. R. Munson, D. F. Young, and T. H. Okiishi, Fundamentals of Fluid Mechanics, Hoboken, NJ: John Wiley Sons, 2006. [65] I.-C. Khoo, Liquid crystals: physical properties and nonlinear optical phenomena, Hoboken, NJ: John Wiley Sons, 2007. [66] A. S. Eggeman, S. A. Majetich, D. Farrell, and Q. A. Pankhurst, “Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2451-2453, 2007. [67] D. Guowei, K. Adriane, X. Chen, C. Jie, and L. Yinfeng, “PVP magnetic nanospheres: Biocompatibility, in vitro and in vivo bleomycin release,” International journal of pharmaceutics, vol. 328, no. 1, pp. 78-85, 2007. [68] M. S. Zakerhamidi, S. Shoarinejad, and S. Mohammadpour, “Fe3O4 nanoparticle effect on dielectric and ordering behavior of nematic liquid crystal host,” Journal of Molecular Liquids, vol. 191, pp. 16-19, 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71014 | - |
dc.description.abstract | 本研究將奈米磁性顆粒(MNP)摻雜在聚合物分散液晶(polymer dispersed liquid crystals, PDLC)中,開發了磁性微型裝置。本研究所提出的裝置可以使用直流磁場無線驅動進行運動。此外,我們更提出了裝置於操作過程使用微小磁場將磁軸再極化的方法。液晶液珠於高分子預聚合物進行聚合反應時析出,並隨機分布於聚合物基質中。形成的液晶液珠仍保有液晶的介晶相狀態,因此被液晶液珠的包覆的奈米磁性顆粒可以在液晶內移動。此磁軸再極化功能所需要的驅動磁場僅需30mT甚至更小的磁場。另一方面,裝置因為與奈米磁性顆粒的體積有巨大差異,裝置會先受到磁場驅動而奈米磁性顆粒則不會。此時透過亥姆霍茲線圈施加不同方向之均勻磁場驅動裝置轉向及移動。本研究也完成了PDLC-MNP微型裝置重要特性的驗證與探討,並成功於PDMS微流道中進行元件之無線操控。 本研究所使用了光敏感型高分子聚合物,可以透過照射紫外光使其聚合化。PDLC-MNP微型裝置可以使用微機電微影製程技術製作,因此裝置可以透過簡易的聚合相分離法,實現微機電製程技術批量生產的特性。本研究也完成了PDLC-MNP微型裝置在極化特性量測,可以得知再極化的完成度與時間及磁場大小皆呈正向關係。並且也微型裝置於微流道中的移動速度。 | zh_TW |
dc.description.abstract | In this work, we propose a magnetic microdevice with the characteristic of tunable magnetic-axis. The proposed device was realized by patterning polymer-dispersed liquid crystal (PDLC) material doped with magnetic nanoparticles (MNP). A technique of in-situ realigning the direction of the device’s magnetic axis using small magnetic fields was also presented. The re-polarization can be achieved by applying the magnetic fields of less than 30 mT. The operation of the PDLC-MNP microdevices can be induced by using two pairs of Helmholtz Coils. The locomotion of the device, including translational motions, magnetic re-polarization, and rotational motion, was demonstrated in a PDMS microfluidic channel. Furthermore, the measured results also showed that rotation angle of the magnetic axis increases with the time of magnetization using a DC magnetic field. The velocities of the devices driven in the microfluidic channel with different concentrations of MNP were also measured. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:48:32Z (GMT). No. of bitstreams: 1 ntu-107-R05522719-1.pdf: 6082615 bytes, checksum: 53ddd13005724c7e2a9af5e1eb22f486 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄 致謝 I 摘要 III Abstract V 目錄 VII 圖目錄 X 表目錄 XV 符號表 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 高分子分散液晶聚合物(PDLC)裝置 3 1.2.2 其他機制驅動之微型裝置 10 1.2.3 無線微型裝置遙控機制 21 1.3 研究動機與目的 30 1.4 論文架構 32 第二章 元件設計與理論 33 2.1 液晶材料之簡介 33 2.2 液晶材料之分類 36 2.2.1 熱致型列向相液晶(Thermotropic Nematic LC) 38 2.3 液晶材料性質 39 2.3.1 連續體理論與彈性係數 39 2.3.2 磁場與磁化率 41 2.4 聚合物分散液晶(PDLC)複合材料 44 2.4.1 聚合物分散液晶複合材料之性質 46 2.5 磁性材料分類 47 2.6 元件設計與操作原理 53 2.6.1 可調式微型磁控載具控制 53 2.7 微型磁控元件之數學模型 55 2.7.1 電磁場線圈之磁場 56 2.7.2 流體阻力 57 第三章 製程方法與步驟 61 3.1 製作流程 61 3.2 聚合物分散液晶(PDLC)預聚合物製備 62 3.3 光罩設計 65 3.4 微影製程 67 3.4.1 PDLC-MNP微影製程原理及流程規劃 69 3.4.2 SU-8翻模模具製作 72 3.4.3 PDLC-MNP元件製作 74 3.5 製作結果 75 第四章 實驗量測與討論 79 4.1 實驗量測設計與架設 79 4.1.1 亥姆霍茲線圈設計 79 4.1.2 亥姆霍茲線圈製作 81 4.2 量測結果與討論 84 4.2.1 PDLC-MNP微型裝置磁軸再極化特性量測 84 4.2.2 PDLC-MNP微型裝置移動速度量測 86 4.2.3 PDLC-MNP微型裝置功能展示 88 第五章 結論與未來展望 95 5.1 結論 95 5.2 未來展望 96 參考文獻 99 附錄A 105 附錄B 107 | |
dc.language.iso | zh-TW | |
dc.title | 磁軸可再極化之高分子分散液晶聚合物微型裝置 | zh_TW |
dc.title | Tunable-magnetic-axis Microdevices Using Polymer-Dispersed Liquid Crystal Doped with Magnetic Nanoparticles | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳國聲,蘇裕軒 | |
dc.subject.keyword | 高分子分散液晶聚合物,可調整之磁軸,奈米磁性顆粒,無線微型裝置, | zh_TW |
dc.subject.keyword | polymer-dispersed liquid crystal,tunable magnetic axis,magnetic nanoparticles,untethered microdevices, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201802305 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 5.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。